login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A191272
Expansion of x*(4+5*x)/( (1-4*x)*(1 + x + x^2) ).
1
0, 4, 17, 63, 256, 1025, 4095, 16384, 65537, 262143, 1048576, 4194305, 16777215, 67108864, 268435457, 1073741823, 4294967296, 17179869185, 68719476735, 274877906944, 1099511627777, 4398046511103, 17592186044416, 70368744177665
OFFSET
0,2
FORMULA
G.f.: x*(4+5*x)/(1 - 3*x - 3*x^2 - 4*x^3).
a(n) = 4^n-A057078(n) = 4^n - (n-th element of periodic length 3 repeat 1, 0, -1)
a(n) = A024495(2*n) + A024495(1+2*n).
a(n+1) = 4*a(n) + (n-th element of periodic length 3 repeat 4, 1, -5).
a(n) = A052539(n) - A080425(n+1). - Bruno Berselli, Jun 06 2011
a(0)=0, a(1)=4, a(2)=17, a(n) = 3*a(n-1) + 3*a(n-2) + 4*a(n-3). - Harvey P. Dale, Jun 19 2011
a(n) = 4*a(n-1) + a(n-3) - 4*(n-4) (n>3). - Bruno Berselli, Jul 04 2011
MATHEMATICA
LinearRecurrence[{3, 3, 4}, {0, 4, 17}, 30] (* or *) CoefficientList[ Series[ x (4+5x)/((1-4x)(1+x+x^2)), {x, 0, 30}], x] (* Harvey P. Dale, Jun 19 2011 *)
PROG
(PARI) a(n)=4^n-[1, 0, -1][n%3+1] \\ Charles R Greathouse IV, Jun 06 2011
(Magma) m:=24; R<x>:=PowerSeriesRing(Integers(), m); [0] cat Coefficients(R!(x*(4+5*x)/((1-4*x)*(1+x+x^2)))); // Bruno Berselli, Jul 04 2011
(Maxima) makelist(coeff(taylor(x*(4+5*x)/((1-4*x)*(1+x+x^2)), x, 0, n), x, n), n, 0, 23); /* Bruno Berselli, Jun 06 2011 */
CROSSREFS
Sequence in context: A339286 A252815 A362593 * A122231 A119916 A209375
KEYWORD
nonn,easy
AUTHOR
Paul Curtz, May 29 2011
STATUS
approved