login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A191012 a(n) = n^5 - n^4 + n^3 - n^2 + n. 1
0, 1, 22, 183, 820, 2605, 6666, 14707, 29128, 53145, 90910, 147631, 229692, 344773, 501970, 711915, 986896, 1340977, 1790118, 2352295, 3047620, 3898461, 4929562, 6168163, 7644120, 9390025, 11441326, 13836447, 16616908, 19827445 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

n such that x^5 + x^4 + x^3 + x^2 + x + n factors over the integers.

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..1000

Index entries for linear recurrences with constant coefficients, signature (6,-15,20,-15,6,-1).

FORMULA

a(n) = n*A060884(n).

G.f.: x*(5*x^4 + 32*x^3 + 66*x^2 + 16*x + 1)/(1-x)^6.

EXAMPLE

a(2) = 22 is in the sequence, because x^5 + x^4 + x^3 + x^2 + x + 22 = (x+2)*(x^4 - x^3 + 3*x^2 - 5*x + 11).

MAPLE

[seq(n*(n^4-n^3+n^2-n+1), n=0..25)];

PROG

(PARI) a(n)=((((n-1)*n+1)*n-1)*n+1)*n \\ Charles R Greathouse IV, Jun 17 2011

(Magma) [n^5 - n^4 + n^3 - n^2 + n: n in [0..30]]; // Vincenzo Librandi, Jun 18 2011

CROSSREFS

Cf. A060884.

Sequence in context: A107969 A248489 A248490 * A248491 A248492 A248493

Adjacent sequences: A191009 A191010 A191011 * A191013 A191014 A191015

KEYWORD

easy,nonn

AUTHOR

Franz Vrabec, Jun 16 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 26 21:15 EST 2022. Contains 358362 sequences. (Running on oeis4.)