%I #9 Jul 04 2017 21:19:47
%S 3,2,1,4,3,2,1,4,3,2,0,3,2,1,4,3,2,1,4,3,2,1,4,3,1,0,3,2,1,4,3,2,1,4,
%T 3,2,1,4,2,1,0,3,2,1,4,3,2,1,4,3,2,0,3,2,1,4,3,2,1,4,3,2,1,4,3,1,0,3,
%U 2,1,4,3,2,1,4,3,2,1,4,2,1,0,3,2,1,4,3,2,1,4,3,2,1,3,2,1,0,3,2,1,4,3,2,1,4,3,2,0,3,2,1,4,3,2,1,4,3,2,1,4,3,1,0,3,2,1,4
%N a(n) = [(bn+c)r]-b[nr]-[cr], where (r,b,c)=(sqrt(3),4,1) and [ ]=floor.
%C Write a(n)=[(bn+c)r]-b[nr]-[cr]. If r>0 and b and c are integers satisfying b>=2 and 0<=c<=b-1, then 0<=a(n)<=b. The positions of 0 in the sequence a are of interest, as are the position sequences for 1,2,...,b. These b+1 position sequences comprise a partition of the positive integers.
%C Examples:
%C (golden ratio,2,1): A190427-A190430
%C (sqrt(2),2,0): A190480-A190482
%C (sqrt(2),2,1): A190483-A190486
%C (sqrt(2),3,0): A190487-A190490
%C (sqrt(2),3,1): A190491-A190495
%C (sqrt(2),3,2): A190496-A190500
%C (sqrt(2),4,c): A190544-A190566
%H G. C. Greubel, <a href="/A190698/b190698.txt">Table of n, a(n) for n = 1..1000</a>
%t r = Sqrt[3]; b = 4; c = 1;
%t f[n_] := Floor[(b*n + c)*r] - b*Floor[n*r] - Floor[c*r];
%t t = Table[f[n], {n, 1, 200}] (* A190698 *)
%t Flatten[Position[t, 0]] (* A190699 *)
%t Flatten[Position[t, 1]] (* A190700 *)
%t Flatten[Position[t, 2]] (* A190701 *)
%t Flatten[Position[t, 3]] (* A190702 *)
%t Flatten[Position[t, 4]] (* A190703 *)
%Y Cf. A190699-A190703.
%K nonn
%O 1,1
%A _Clark Kimberling_, May 17 2011