login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of partitions of 10^n into 2 composite relatively prime parts.
0

%I #19 Feb 13 2015 00:25:41

%S 0,0,2,61,899,11219,126905,1374229,14529946,151426672,1563147978,

%T 16031036348

%N Number of partitions of 10^n into 2 composite relatively prime parts.

%e a(2)=2 because 10^2 = 9 + 91 = 49 + 51, 9 and 91 are composite and coprime, 49 and 51 are composite and coprime.

%t a[n_] := Module[{cnt=0}, Do[If[!PrimeQ[k]&&!PrimeQ[10^n-k]&&GCD[k,10^n-k]==1,cnt++],{k,3,(1/2)10^n,2}]; cnt]

%o (PARI) a(n) = my(N=10^n, s=0); forstep(k=9, N/2, [2,2,4,2], s += !isprime(k) & !isprime(N-k)); s \\ _Charles R Greathouse IV_, May 17 2011

%o (PARI) a(n)=my(N=10^n,s=0,p=7);forprime(q=11,N/2,forstep(k=p+2,q-2,2,s+=k%5&!isprime(N-k));p=q);s+sum(k=precprime(N/2)+2,N/2,gcd(k,10)==1&!isprime(N-k)) \\ _Charles R Greathouse IV_, May 17 2011

%Y Cf. A000041, A023022, A000837.

%K nonn

%O 0,3

%A _Zak Seidov_, May 17 2011

%E a(9)-a(10) from _Charles R Greathouse IV_, May 18 2011

%E a(11) from _Charles R Greathouse IV_, May 20 2011