%I
%S 2,2,22,22,12,22,22,22,222,202,102,222,222,112,122,122,122,222,202,
%T 202,222,222,212,222,222,222,2222,2002,1002,2222,2022,1012,1122,1022,
%U 1022,2222,2202,1102,2222,2222,1112,1122,1122,1122,1222,1202,1202,1222,1222,1212,1222,1222,1222,2222,2002,2002,2222,2012,2012,2222,2022,2022,2222,2102,2102,2222,2222,2112,2222,2222,2122,2222,2202,2202,2222,2222,2212,2222,2222,2222
%N In base 3 lunar arithmetic, the lunar sum of the lunar divisors of n.
%H D. Applegate, M. LeBrun and N. J. A. Sloane, <a href="http://arxiv.org/abs/1107.1130">Dismal Arithmetic</a> [Note: we have now changed the name from "dismal arithmetic" to "lunar arithmetic" - the old name was too depressing]
%H D. Applegate, M. LeBrun, N. J. A. Sloane, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL14/Sloane/carry2.html">Dismal Arithmetic</a>, J. Int. Seq. 14 (2011) # 11.9.8.
%H <a href="/index/Di#dismal">Index entries for sequences related to dismal (or lunar) arithmetic</a>
%Y Cf. A007089, A188548, A087416.
%K nonn,base
%O 1,1
%A _N. J. A. Sloane_, May 14 2011
|