login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A190581 Value of z in the Diophantine equation x^3 + y^3 = n*z^3 (with x>0 and minimal and x >= y and y != 0) 3

%I

%S 1,21,1,1,39,3,294,7,1,7,9954,1,1,57,42,582,182,1,1,129,2,3,6111,

%T 197028,217,7083,1,3,1,1,1323,620505,3318,13,43,3606,1302,3,111,

%U 330498,3,216266610,13,273,1,5733,590736058375050,3,1,117,1014,25767,19,37,1878,1029364,1,37045412880,1,1,1,11285694

%N Value of z in the Diophantine equation x^3 + y^3 = n*z^3 (with x>0 and minimal and x >= y and y != 0)

%C A190356(n)^3 + y^3 = A020898(n)*a(n)^3. Unknown y corresponds to sequence A190580.

%C The 4 sequences A020898 [i.e. n], A190356 [i.e. x], A190580 [i.e. y] and A190581 [i.e. z] satisfy the equation A190356(n)^3 + A190580(n)^3 = A020898(n) * A190581(n)^3

%H Steven R. Finch, <a href="http://www.people.fas.harvard.edu/~sfinch/csolve/fermat.pdf">On a Generalized Fermat-Wiles Equation</a> [broken link]

%H Steven R. Finch, <a href="http://web.archive.org/web/20010602030546/http://www.mathsoft.com/asolve/fermat/fermat.html">On a Generalized Fermat-Wiles Equation</a> [From the Wayback Machine]

%H Hisanori Mishima, <a href="http://www.asahi-net.or.jp/~KC2H-MSM/ec/eca1/x3y3s.txt">Solutions of Diophantine equation x^3+y^3=A.z^3 ...</a>

%e a(18) = 1 because A020898(18) = 35 and 3^3 + 2^3 = 35*1^3.

%t a[n_] := z /. ToRules[ Reduce[ z > 0 && A190356[[n]]^3 + A190580[[n]]^3 == A020898[[n]]*z^3, z, Integers]]; Table[a[n] , {n, 1, 62}]

%Y Cf. A020898 and A190356

%K nonn

%O 1,2

%A _Jean-Fran├žois Alcover_, May 13 2011

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 18 02:34 EDT 2022. Contains 356204 sequences. (Running on oeis4.)