login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A190366 n + [n*r/t] + [n*s/t] + [n*u/t]; r=sqrt(2), s=1/r, t=sqrt(3), u=1/t. 4

%I #12 Sep 08 2022 08:45:57

%S 1,3,7,9,12,14,16,19,22,25,26,29,32,34,38,40,41,45,47,50,53,54,57,60,

%T 63,65,69,70,72,76,78,81,83,85,88,91,94,96,98,101,103,107,109,110,114,

%U 116,119,122,125,126,129,132,134,138,139,141,145,147,150,152,154,157,160,163,165,167,170,172,176,178,179,183,185,188,191

%N n + [n*r/t] + [n*s/t] + [n*u/t]; r=sqrt(2), s=1/r, t=sqrt(3), u=1/t.

%C See A190364.

%H G. C. Greubel, <a href="/A190366/b190366.txt">Table of n, a(n) for n = 1..10000</a>

%F A190364: a(n) = n + [n/2] + [n*sqrt(3/2)] + [n*sqrt(1/6)].

%F A190365: b(n) = 3*n + [n*sqrt(6)] + [n*sqrt(2/3)].

%F A190366: c(n) = n + [n*sqrt(2/3)] + [n*sqrt(1/6)] + [n/3].

%F A190367: d(n) = 4*n + [n*sqrt(6)] + [n*sqrt(3/2)].

%p r:=sqrt(2): s:=1/r: t:=sqrt(3): u:=1/t: seq(n + floor(n*r/t) + floor(n*s/t) + floor(n*u/t), n=1..10^3); # _Muniru A Asiru_, Feb 01 2018

%t Table[n + Floor[n/3] + Floor[n*Sqrt[2/3]] + Floor[n*Sqrt[1/6]], {n,1,30}] (* _G. C. Greubel_, Jan 31 2018 *)

%o (PARI) for(n=1,30, print1(n + floor(n/3) + floor(n*sqrt(2/3)) + floor(n*sqrt(1/6)), ", ")) \\ _G. C. Greubel_, Jan 31 2018

%o (Magma) [n + Floor(n/3) + Floor(n*Sqrt(2/3)) + Floor(n*Sqrt(1/6)): n in [1..30]]; // _G. C. Greubel_, Jan 31 2018

%Y Cf. A190364, A190365, A190367.

%K nonn

%O 1,2

%A _Clark Kimberling_, May 09 2011

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 14 10:04 EDT 2024. Contains 371657 sequences. (Running on oeis4.)