The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.



(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A190360 Number of one-sided n-step prudent walks, avoiding 4 or more consecutive east steps. 2


%S 1,3,7,17,40,96,229,547,1306,3119,7448,17786,42473,101426,242206,

%T 578390,1381200,3298317,7876408,18808927,44915872,107259471,256136497,

%U 611656057,1460639684,3488019553,8329419319,19890721694,47499206650

%N Number of one-sided n-step prudent walks, avoiding 4 or more consecutive east steps.

%C a(n,k) is the number of one-sided n-step prudent walks, avoiding k or more consecutive east steps; k=4 in this sequence.

%D S. Gao and H. Niederhausen, Sequences Arising From Prudent Self-Avoiding Walks, (submitted to INTEGERS: The Electronic Journal of Combinatorial Number Theory).

%H Alois P. Heinz, <a href="/A190360/b190360.txt">Table of n, a(n) for n = 0..1000</a>

%H Shanzhen Gao, Keh-Hsun Chen, <a href="http://worldcomp-proceedings.com/proc/p2014/FCS2696.pdf">Tackling Sequences From Prudent Self-Avoiding Walks</a>, FCS'14, The 2014 International Conference on Foundations of Computer Science.

%F G.f.: (1+t-t^k)/(1-2*t-t^2+t^(k+1)), (k=4 in this sequence).

%p b:= proc(n, i) option remember; `if`(n<0, 0,

%p `if`(n=0, 1, b(n-1,0) +`if`(i<=0, b(n-1,-1), 0)+

%p `if`(i>=0 and i<3, b(n-1,i+1), 0)))

%p end:

%p a:= n-> b(n, 0):

%p seq(a(n), n=0..30); # _Alois P. Heinz_, Jun 04 2011

%t (1+t-t^k)/(1-2*t-t^2+t^(k+1)) /. k -> 4 + O[t]^25 // CoefficientList[#, t]& (* _Jean-Fran├žois Alcover_, Oct 24 2016 *)

%Y Cf. A006356 = a(n,2), A033303 = a(n,3).

%K nonn,walk

%O 0,2

%A _Shanzhen Gao_, May 09 2011

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 31 16:23 EDT 2020. Contains 333151 sequences. (Running on oeis4.)