login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A190328 a(n) = n + [n*r/t] + [n*s/t]; r=1/2, s=sinh(Pi/2), t=cosh(Pi/2). 4

%I

%S 1,3,5,7,9,12,14,16,18,20,23,25,26,28,30,33,35,37,39,41,44,46,48,50,

%T 51,54,56,58,60,62,65,67,69,71,73,76,77,79,81,83,86,88,90,92,94,97,99,

%U 101,102,104,107,109,111,113,115,118,120,122,124,126,128,130,132,134,136,139,141,143,145,147,150,152,153,155,157,160

%N a(n) = n + [n*r/t] + [n*s/t]; r=1/2, s=sinh(Pi/2), t=cosh(Pi/2).

%C See A190326.

%H G. C. Greubel, <a href="/A190328/b190328.txt">Table of n, a(n) for n = 1..10000</a>

%F A190326: f(n) = n + [2*n*sinh(Pi/2)] + [2*n*cosh(Pi/2)].

%F A190327: g(n) = n + [n*csch(Pi/2)/2] + [n*coth(Pi/2)].

%F A190328: h(n) = n + [n*sech(Pi/2)/2] + [n*tanh(Pi/2)].

%p r:=1/2: s:=sinh(Pi/2): t:=cosh(Pi/2): seq(n+floor(n*r/t)+floor(n*s/t),n=1..80); # _Muniru A Asiru_, Apr 05 2018

%t r=1/2; s=Sinh[Pi/2]; t=Cosh[Pi/2];

%t f[n_] := n + Floor[n*s/r] + Floor[n*t/r];

%t g[n_] := n + Floor[n*r/s] + Floor[n*t/s];

%t h[n_] := n + Floor[n*r/t] + Floor[n*s/t];

%t Table[f[n], {n, 1, 120}] (* A190326 *)

%t Table[g[n], {n, 1, 120}] (* A190327 *)

%t Table[h[n], {n, 1, 120}] (* A190328 *)

%o (PARI) for(n=1,100, print1(n + floor(n/(2*cosh(Pi/2))) + floor(n*tanh(Pi/2)), ", ")) \\ _G. C. Greubel_, Apr 04 2018

%o (MAGMA) R:=RealField(); [n + Floor(n/(2*Cosh(Pi(R)/2))) + Floor(n*Tanh(Pi(R)/2)): n in [1..100]]; // _G. C. Greubel_, Apr 04 2018

%Y Cf. A190326, A190327.

%K nonn

%O 1,2

%A _Clark Kimberling_, May 08 2011

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 18 03:25 EDT 2021. Contains 348065 sequences. (Running on oeis4.)