login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A190069 Number of arrangements of n+1 nonzero numbers x(i) in -7..7 with the sum of div(x(i),x(i+1)), where div(a,b)=a/b produces the integer quotient implying a nonnegative remainder, equal to zero 1

%I #5 Mar 31 2012 12:36:19

%S 42,366,4150,48491,599181,7737762,101530262,1333341624,17643516841,

%T 235162515839,3146321736755,42232649776342,568807797004946,

%U 7683091138249061,104022021281511319,1411291383524511348

%N Number of arrangements of n+1 nonzero numbers x(i) in -7..7 with the sum of div(x(i),x(i+1)), where div(a,b)=a/b produces the integer quotient implying a nonnegative remainder, equal to zero

%C Column 7 of A190071

%H R. H. Hardin, <a href="/A190069/b190069.txt">Table of n, a(n) for n = 1..81</a>

%e Some solutions for n=4

%e ..5....3...-4...-5....7....3....1....1....5...-3....3....1...-4....2....4....5

%e .-5....5...-6...-5....3...-2...-3....2...-1...-2...-3...-5...-2...-3....6...-1

%e .-5...-3...-7...-7...-2...-7...-3....6....3....1....6....3...-7....2...-5...-1

%e ..7...-2....4....7....2...-5...-4....6....6....2....4...-7....6....1...-3...-7

%e ..5....4....5...-6...-3....4....3...-5....1....7....4...-5...-5...-4....5...-3

%K nonn

%O 1,1

%A _R. H. Hardin_ May 04 2011

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 2 17:19 EST 2023. Contains 367525 sequences. (Running on oeis4.)