login
Number of arrangements of n+1 nonzero numbers x(i) in -7..7 with the sum of div(x(i),x(i+1)), where div(a,b)=a/b produces the integer quotient implying a nonnegative remainder, equal to zero
1

%I #5 Mar 31 2012 12:36:19

%S 42,366,4150,48491,599181,7737762,101530262,1333341624,17643516841,

%T 235162515839,3146321736755,42232649776342,568807797004946,

%U 7683091138249061,104022021281511319,1411291383524511348

%N Number of arrangements of n+1 nonzero numbers x(i) in -7..7 with the sum of div(x(i),x(i+1)), where div(a,b)=a/b produces the integer quotient implying a nonnegative remainder, equal to zero

%C Column 7 of A190071

%H R. H. Hardin, <a href="/A190069/b190069.txt">Table of n, a(n) for n = 1..81</a>

%e Some solutions for n=4

%e ..5....3...-4...-5....7....3....1....1....5...-3....3....1...-4....2....4....5

%e .-5....5...-6...-5....3...-2...-3....2...-1...-2...-3...-5...-2...-3....6...-1

%e .-5...-3...-7...-7...-2...-7...-3....6....3....1....6....3...-7....2...-5...-1

%e ..7...-2....4....7....2...-5...-4....6....6....2....4...-7....6....1...-3...-7

%e ..5....4....5...-6...-3....4....3...-5....1....7....4...-5...-5...-4....5...-3

%K nonn

%O 1,1

%A _R. H. Hardin_ May 04 2011