%I
%S 54,2916,111778,4109278,146936454,5218915180,184841938568,
%T 6541724250668,231454020188296,8188468500199960,289687090181612928,
%U 10248307021638957576,362555088540779428652,12826127140789117054224
%N Number of 7Xn binary arrays without the pattern 0 0 1 vertically or antidiagonally
%C Row 7 of A189196
%H R. H. Hardin, <a href="/A189200/b189200.txt">Table of n, a(n) for n = 1..200</a>
%F Empirical: a(n) = 54*a(n-1) -668*a(n-2) -1204*a(n-3) +61804*a(n-4) -256164*a(n-5) -878308*a(n-6) +10709472*a(n-7) -44896206*a(n-8) +104874996*a(n-9) -43296144*a(n-10) -436368072*a(n-11) +835505708*a(n-12) +306209160*a(n-13) -2149084380*a(n-14) +1133599936*a(n-15) +2259522864*a(n-16) -2594329280*a(n-17) -746020352*a(n-18) +2135481048*a(n-19) -324584736*a(n-20) -785978048*a(n-21) +290785696*a(n-22) +115315328*a(n-23) -70555264*a(n-24) +232448*a(n-25) +5530624*a(n-26) -1105920*a(n-27) +65536*a(n-28)
%e Some solutions for 7X3
%e ..1..0..1....0..1..1....1..0..1....1..0..1....0..0..1....0..0..1....0..1..1
%e ..0..1..1....1..0..1....1..1..1....0..1..0....1..1..0....1..1..1....1..1..1
%e ..1..0..1....0..1..1....1..0..0....1..1..1....1..0..1....1..0..0....1..1..1
%e ..1..1..0....1..1..1....0..1..1....0..1..0....0..1..1....1..1..1....1..0..0
%e ..0..1..1....1..1..0....0..0..1....1..1..1....1..1..1....0..0..0....0..1..1
%e ..1..0..1....0..1..1....0..0..0....1..1..0....1..1..0....1..1..0....1..1..0
%e ..1..0..0....0..0..0....0..0..1....0..1..1....1..0..0....1..1..0....0..0..1
%K nonn
%O 1,1
%A _R. H. Hardin_ Apr 18 2011
|