%I
%S 12,144,1112,8024,53024,339927,2125134,13128024,80418708,490332106,
%T 2980442190,18082824827,109579150934,663532220578,4015904399274,
%U 24297890544570,146982319288138,889004822816985,5376572830392848
%N Number of nX4 binary arrays without the pattern 0 0 1 vertically or horizontally
%C Column 4 of A188763
%H R. H. Hardin, <a href="/A188758/b188758.txt">Table of n, a(n) for n = 1..200</a>
%F Empirical: a(n) = 13*a(n-1) -24*a(n-2) -309*a(n-3) +1139*a(n-4) +2904*a(n-5) -15708*a(n-6) -13388*a(n-7) +114908*a(n-8) +27510*a(n-9) -517862*a(n-10) +10696*a(n-11) +1525375*a(n-12) -199987*a(n-13) -2999240*a(n-14) +537335*a(n-15) +3938119*a(n-16) -825688*a(n-17) -3403810*a(n-18) +826898*a(n-19) +1870596*a(n-20) -531896*a(n-21) -607828*a(n-22) +201144*a(n-23) +99904*a(n-24) -37536*a(n-25) -5568*a(n-26) +2304*a(n-27)
%e Some solutions for 3X4
%e ..1..1..0..1....0..1..1..1....0..1..1..1....1..1..1..1....1..1..0..1
%e ..0..1..1..1....1..0..1..0....1..0..1..1....1..1..1..0....0..0..0..0
%e ..0..1..0..1....0..0..0..0....1..1..0..0....0..1..0..0....0..1..0..0
%K nonn
%O 1,1
%A _R. H. Hardin_ Apr 09 2011
|