%I #5 Mar 31 2012 12:36:13
%S 32,144,1665,11556,103484,813309,6814290,55337580,456131965,
%T 3733374889,30657827284,251373054600,2062533960693,16917792861256,
%U 138787419681888,1138485405941113,9339379255511170,76613020663877804,628477682370006669
%N Number of nX5 binary arrays without the pattern 0 0 diagonally or vertically
%C Column 5 of A188706
%H R. H. Hardin, <a href="/A188702/b188702.txt">Table of n, a(n) for n = 1..200</a>
%F Empirical: a(n) = a(n-1) +49*a(n-2) +107*a(n-3) -154*a(n-4) -404*a(n-5) +250*a(n-6) +472*a(n-7) -278*a(n-8) -168*a(n-9) +131*a(n-10) -9*a(n-11) -7*a(n-12) +a(n-13)
%e Some solutions for 3X5
%e ..1..1..1..1..1....0..0..1..0..0....0..1..1..1..0....1..0..0..1..0
%e ..1..1..1..1..0....1..1..1..1..1....1..1..1..1..1....0..1..1..1..1
%e ..0..1..1..0..1....0..0..1..0..1....1..1..0..1..0....1..1..0..1..1
%K nonn
%O 1,1
%A _R. H. Hardin_ Apr 08 2011