

A208619


Number of Young tableaux with 6 nlength rows, increasing entries down the columns and monotonic entries along the rows (first row increasing).


1



1, 1, 462, 109027, 144558247, 398084427253, 1672481205752413, 9490918987253894191, 67868136936393109678363, 583693245266271046705306483, 5838544884938502473966453328313, 66244125517281822956796820132971163, 836288765056123179126895804194418164733
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,3


COMMENTS

Also the number of (6*n1)step walks on ndimensional cubic lattice from (1,0,...,0) to (6,6,...,6) with positive unit steps in all dimensions such that for each point (p_1,p_2,...,p_n) we have p_1<=p_2<=...<=p_n or p_1>=p_2>=...>=p_n.


LINKS

Table of n, a(n) for n=0..12.


CROSSREFS

Row n=6 of A208615.
Sequence in context: A027565 A035847 A140905 * A318266 A295432 A213406
Adjacent sequences: A208616 A208617 A208618 * A208620 A208621 A208622


KEYWORD

nonn,walk


AUTHOR

Alois P. Heinz, Feb 29 2012


STATUS

approved



