login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A188162 a(n) = ceiling( 4^n/20 - (n^2 + 1)*2^(n-1) ). 2
0, -1, -9, -36, -123, -364, -979, -2380, -5043, -7884, 717, 84788, 541901, 2659124, 11807949, 49984308, 206326989, 839988020, 3393375437, 13648999220, 54765341901, 219438854964, 878592183501, 3516214227764 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

Lower bound on the crossing number of locally twisted n-dimensional hypercube LTQ(n). From Wang, p. 3.

LINKS

Table of n, a(n) for n=0..23.

Haoli Wang, Xirong Xu, Yuansheng Yang, Bao Liu, Wenping Zheng, Guoqing Wang, The crossing number of locally twisted cubes, arXiv:1103.4227 [math.CO], Mar 22, 2011.

Index entries for linear recurrences with constant coefficients, signature (10,-35,46,4,-56,32)

FORMULA

a(n) = 4^n/20 - (1+n^2)*2^(n-1) + 1/2 - 3*(-1)^n/10, n > 0. G.f.: x*(1 - x - 19*x^2 + 32*x^3 - 24*x^4 + 8*x^5) / ( (x-1)*(4*x-1)*(1+x)*(2*x-1)^3 ). - R. J. Mathar, Mar 24 2011

EXAMPLE

a(0) = ceiling(4^0 / 20) - ((0^2 + 1) * 2^(0 - 1)) = ceiling(-0.45) = 0.

a(1) = ceiling(4^1 / 20) - ((1^2 + 1) * 2^(1 - 1)) = ceiling(-1.8) = -1.

a(2) = ceiling (4^2 / 20) - ((2^2 + 1) * 2^(2 - 1)) = ceiling(-9.2) = -9.

a(3) = ceiling (4^3 / 20) - ((3^2 + 1) * 2^(3 - 1)) = ceiling(-36.8) = -36.

a(4) =  ceiling (4^4 / 20) - ((4^2 + 1) * 2^(4 - 1)) = ceiling(-123.2) = -123.

MAPLE

A188162 := proc(n) 4^n/20 -(n^2+1)*2^(n-1) ; ceil(%) ; end proc:

seq(A188162(n), n=0..23) ; # R. J. Mathar, Mar 23 2011

CROSSREFS

Sequence in context: A259279 A168569 A213283 * A023872 A034557 A285241

Adjacent sequences:  A188159 A188160 A188161 * A188163 A188164 A188165

KEYWORD

sign,easy

AUTHOR

Jonathan Vos Post, Mar 23 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 1 18:28 EDT 2020. Contains 334762 sequences. (Running on oeis4.)