Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #15 Dec 14 2019 21:28:33
%S 0,0,1,0,2,0,0,3,2,3,0,4,4,8,4,0,5,8,16,16,16,0,6,12,31,42,52,42,0,7,
%T 18,51,90,137,152,137,0,8,24,80,172,308,426,484,426,0,9,32,118,296,
%U 624,1032,1398,1536,1398,0,10,40,167,482,1154,2216,3528,4622,5064,4622,0,11,50
%N Table read by downward antidiagonals: T(n,k) is the number of strictly increasing arrangements of n nonzero numbers in -(n+k-2)..(n+k-2) with sum zero.
%C Table starts
%C 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...
%C 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, ...
%C 0, 2, 4, 8, 12, 18, 24, 32, 40, 50, 60, ...
%C 3, 8, 16, 31, 51, 80, 118, 167, 227, 302, 390, ...
%C 4, 16, 42, 90, 172, 296, 482, 740, 1092, 1554, 2154, ...
%C 16, 52, 137, 308, 624, 1154, 1999, 3278, 5144, 7772, 11387, ...
%C 42, 152, 426, 1032, 2216, 4376, 8044, 13994, 23210, 37030, 57086, ...
%C 137, 484, 1398, 3528, 7970, 16547, 32035, 58595, 102113, 170844, 275878, ...
%C 426, 1536, 4622, 12124, 28660, 62222, 126122, 241250, 439514, 767656, 1292864, ...
%C 1398, 5064, 15594, 42262, 103599, 233880, 493267, 982016, 1861168, 3379972, 5913676, ...
%H R. H. Hardin, <a href="/A188122/b188122.txt">Table of n, a(n) for n = 1..550</a>
%H Louis Ng, <a href="http://math.sfsu.edu/beck/teach/masters/louis.pdf">Magic counting with inside-out polytopes</a>, Master's Thesis, San Francisco State University, 2018.
%e Some solutions for n=8, k=6:
%e -11 -12 -11 -11 -12 -10 -11 -12 -12 -9 -10 -11 -11 -12 -12 -7
%e -9 -9 -10 -8 -6 -8 -9 -11 -9 -5 -8 -10 -8 -10 -10 -6
%e -5 -8 -4 -4 -4 -5 -8 -4 -8 -4 -5 -4 -7 -9 -5 -5
%e -4 -3 -2 -2 -1 -3 -3 -2 1 -2 -3 -1 1 1 -2 -3
%e 2 5 2 1 2 -1 1 -1 4 1 4 3 2 2 3 -2
%e 6 8 4 6 4 8 7 7 5 2 5 4 6 8 5 5
%e 9 9 10 7 5 9 11 11 9 8 8 8 7 9 9 8
%e 12 10 11 11 12 10 12 12 10 9 9 11 10 11 12 10
%Y Row 3 is A007590.
%K nonn,tabl
%O 1,5
%A _R. H. Hardin_, Mar 21 2011