login
Rank transform of the sequence floor((3-sqrt(5))n); complement of A187906.
2

%I #5 Dec 04 2016 19:46:25

%S 1,2,4,6,7,8,10,11,12,14,16,18,19,20,22,24,25,27,28,30,31,32,34,35,37,

%T 38,40,42,43,44,46,47,49,50,52,53,55,57,58,59,61,63,64,66,67,69,70,72,

%U 73,75,76,78,79,81,82,83,85,87,89,90,91,93,95,96,97,99,101,102,103,105,107,108,109,111,112,114,115,117,119,120,121,123,124,126

%N Rank transform of the sequence floor((3-sqrt(5))n); complement of A187906.

%C See A187224.

%t r=3-5^(1/2);

%t seqA = Table[Floor[r*n], {n, 1, 220}] (*A187329*)

%t seqB = Table[n, {n, 1, 220}]; (*A000027*)

%t jointRank[{seqA_,

%t seqB_}] := {Flatten@Position[#1, {_, 1}],

%t Flatten@Position[#1, {_, 2}]} &[

%t Sort@Flatten[{{#1, 1} & /@ seqA, {#1, 2} & /@ seqB}, 1]];

%t limseqU =

%t FixedPoint[jointRank[{seqA, #1[[1]]}] &,

%t jointRank[{seqA, seqB}]][[1]] (*A187905*)

%t Complement[Range[Length[seqA]], limseqU] (*A187906*)

%t (*by _Peter J. C. Moses_, Mar 15 2011*)

%Y Cf. A187224, A187906.

%K nonn

%O 1,2

%A _Clark Kimberling_, Mar 15 2011