%I #6 Dec 04 2016 19:46:25
%S 1,3,4,7,8,9,12,14,15,16,18,20,22,24,26,27,29,31,32,34,36,38,39,41,43,
%T 45,46,48,50,51,54,55,57,58,60,62,64,66,67,69,71,72,74,76,78,80,81,83,
%U 85,86,88,90,92,93,95,97,99,100,102,104,105,107,109,111,113,114,116,118,120,121,123,125,127,128,130,132,133,135,137,139,140,143,144
%N Rank transform of the sequence floor((2-1/sqrt(2))n); complement of A187904.
%C See A187224.
%t r=2-2^(-1/2);
%t seqA = Table[Floor[r*n], {n, 1, 220}]
%t seqB = Table[n, {n, 1, 220}]; (*A000027*)
%t jointRank[{seqA_,
%t seqB_}] := {Flatten@Position[#1, {_, 1}],
%t Flatten@Position[#1, {_, 2}]} &[
%t Sort@Flatten[{{#1, 1} & /@ seqA, {#1, 2} & /@ seqB}, 1]];
%t limseqU =
%t FixedPoint[jointRank[{seqA, #1[[1]]}] &,
%t jointRank[{seqA, seqB}]][[1]] (*A187903*)
%t Complement[Range[Length[seqA]], limseqU] (*A187904*)
%t (*by _Peter J. C. Moses_, Mar 15 2011*)
%Y Cf. A187224, A187904.
%K nonn
%O 1,2
%A _Clark Kimberling_, Mar 15 2011