login
Rank transform of the sequence floor((2-1/sqrt(2))n); complement of A187904.
2

%I #6 Dec 04 2016 19:46:25

%S 1,3,4,7,8,9,12,14,15,16,18,20,22,24,26,27,29,31,32,34,36,38,39,41,43,

%T 45,46,48,50,51,54,55,57,58,60,62,64,66,67,69,71,72,74,76,78,80,81,83,

%U 85,86,88,90,92,93,95,97,99,100,102,104,105,107,109,111,113,114,116,118,120,121,123,125,127,128,130,132,133,135,137,139,140,143,144

%N Rank transform of the sequence floor((2-1/sqrt(2))n); complement of A187904.

%C See A187224.

%t r=2-2^(-1/2);

%t seqA = Table[Floor[r*n], {n, 1, 220}]

%t seqB = Table[n, {n, 1, 220}]; (*A000027*)

%t jointRank[{seqA_,

%t seqB_}] := {Flatten@Position[#1, {_, 1}],

%t Flatten@Position[#1, {_, 2}]} &[

%t Sort@Flatten[{{#1, 1} & /@ seqA, {#1, 2} & /@ seqB}, 1]];

%t limseqU =

%t FixedPoint[jointRank[{seqA, #1[[1]]}] &,

%t jointRank[{seqA, seqB}]][[1]] (*A187903*)

%t Complement[Range[Length[seqA]], limseqU] (*A187904*)

%t (*by _Peter J. C. Moses_, Mar 15 2011*)

%Y Cf. A187224, A187904.

%K nonn

%O 1,2

%A _Clark Kimberling_, Mar 15 2011