login
Rank transform of the sequence floor((3-sqrt(3))n); complement of A187902.
2

%I #5 Dec 04 2016 19:46:25

%S 1,3,4,7,8,9,11,14,15,17,18,20,22,23,26,27,29,30,33,34,35,37,39,41,43,

%T 44,46,48,50,52,53,55,56,58,60,62,63,65,67,68,70,72,74,75,78,79,81,82,

%U 84,86,88,89,91,93,95,97,98,100,101,104,105,106,108,110,112,114,115,117,119,120,123,124,126,127,129,131,132,134,136,138,140,141,143

%N Rank transform of the sequence floor((3-sqrt(3))n); complement of A187902.

%C See A187224.

%t r=3-3^(1/2);

%t seqA = Table[Floor[r*n], {n, 1, 220}]

%t seqB = Table[n, {n, 1, 220}]; (*A000027*)

%t jointRank[{seqA_,

%t seqB_}] := {Flatten@Position[#1, {_, 1}],

%t Flatten@Position[#1, {_, 2}]} &[

%t Sort@Flatten[{{#1, 1} & /@ seqA, {#1, 2} & /@ seqB}, 1]];

%t limseqU =

%t FixedPoint[jointRank[{seqA, #1[[1]]}] &,

%t jointRank[{seqA, seqB}]][[1]] (*A187901*)

%t Complement[Range[Length[seqA]], limseqU] (*A187902*)

%t (*by _Peter J. C. Moses_, Mar 15 2011*)

%Y Cf. A187224, A187902.

%K nonn

%O 1,2

%A _Clark Kimberling_, Mar 15 2011