login
Rank transform of the sequence floor((2-sqrt(2))n); complement of A187900.
2

%I #5 Dec 04 2016 19:46:25

%S 1,2,3,5,6,8,10,11,12,13,15,17,18,19,20,22,23,24,26,27,29,30,32,34,35,

%T 36,37,39,40,41,43,44,46,47,49,51,52,53,54,56,58,59,61,62,63,64,66,68,

%U 69,70,71,73,75,76,77,78,80,81,82,84,85,87,88,90,92,93,94,95,97,99,100,102,103,104,105,107,109,110,111,112,114,116,117,118,119,121,122,123,125,126,128,129,131,133

%N Rank transform of the sequence floor((2-sqrt(2))n); complement of A187900.

%C See A187224.

%t r=2-2^(1/2);

%t seqA = Table[Floor[r*n], {n, 1, 220}]

%t seqB = Table[n, {n, 1, 220}]; (*A000027*)

%t jointRank[{seqA_,

%t seqB_}] := {Flatten@Position[#1, {_, 1}],

%t Flatten@Position[#1, {_, 2}]} &[

%t Sort@Flatten[{{#1, 1} & /@ seqA, {#1, 2} & /@ seqB}, 1]];

%t limseqU =

%t FixedPoint[jointRank[{seqA, #1[[1]]}] &,

%t jointRank[{seqA, seqB}]][[1]] (*A187899*)

%t Complement[Range[Length[seqA]], limseqU] (*A187900*)

%t (*by _Peter J. C. Moses_, Mar 13 2011*)

%Y Cf. A187224, A187900.

%K nonn

%O 1,2

%A _Clark Kimberling_, Mar 15 2011