login
Riordan matrix (1/(1-x-x^2-x^3),(x+x^2+x^3)/(1-x-x^2-x^3)).
2

%I #19 Dec 26 2023 10:08:03

%S 1,1,1,2,3,1,4,8,5,1,7,19,18,7,1,13,43,54,32,9,1,24,94,147,117,50,11,

%T 1,44,200,375,375,216,72,13,1,81,418,913,1100,799,359,98,15,1,149,861,

%U 2147,3027,2657,1507,554,128,17,1,274,1753,4914,7937,8174,5610,2603,809,162,19,1

%N Riordan matrix (1/(1-x-x^2-x^3),(x+x^2+x^3)/(1-x-x^2-x^3)).

%F a(n,k) = Sum_{i=0..n-k} binomial(i+k,k)*trinomial(i+k,n-k-i), where trinomial(n,k) are the trinomial coefficients (A027907).

%F Recurrence: a(n+3,k+1) = a(n+2,k+1) + a(n+2,k) + a(n+1,k+1) + a(n+1,k) + a(n,k+1) + a(n,k)

%e Triangle begins:

%e 1

%e 1,1

%e 2,3,1

%e 4,8,5,1

%e 7,19,18,7,1

%e 13,43,54,32,9,1

%e 24,94,147,117,50,11,1

%e 44,200,375,375,216,72,13,1

%e 81,418,913,1100,799,359,98,15,1

%t (* Function RiordanSquare defined in A321620. *)

%t RiordanSquare[1/(1 - x - x^2- x^3), 11] // Flatten (* _Peter Luschny_, Nov 27 2018 *)

%o (Maxima) trinomial(n,k):=coeff(expand((1+x+x^2)^n),x,k);

%o create_list(sum(binomial(i+k,k)*trinomial(i+k,n-k-i),i,0,n-k),n,0,8,k,0,n);

%Y Cf. A104580, A321620.

%K nonn,easy,tabl

%O 0,4

%A _Emanuele Munarini_, Mar 15 2011