%I
%S 0,0,1008,61668,636102,2432312,6343874,12918800,22675997,35694138,
%T 52156394,71825663,94825088,120967427,150298947,182782127,218416967,
%U 257203467,299141627,344231447,392472927,443866067,498410867,556107327
%N Number of 8step one space for components leftwards or up, two space for components rightwards or down asymmetric quasiqueen's tours (antidiagonal moves become knight moves) on an n X n board summed over all starting positions
%C Row 8 of A187857
%H R. H. Hardin, <a href="/A187863/b187863.txt">Table of n, a(n) for n = 1..50</a>
%F Empirical: a(n) = 1575830*n^2  16367550*n + 41250447 for n>13
%e Some solutions for 4X4
%e ..0..7..0..0....0..7..0..0....0..0..0..3....5..0..0..0....0..0..5..0
%e ..1..6..0..0....1..6..2..0....7..1..0..2....4..0..7..0....8..0..4..0
%e ..3..5..4..8....8..5..4..0....0..6..5..4....0..3..6..0....7..6..0..3
%e ..2..0..0..0....0..0..3..0....8..0..0..0....0..8..2..1....0..2..1..0
%K nonn
%O 1,3
%A _R. H. Hardin_ Mar 14 2011
