OFFSET
1,2
COMMENTS
Numbers congruent to {1,5} mod 10. - Bruno Berselli, Mar 31 2012
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 1..10000
Index entries for linear recurrences with constant coefficients, signature (1,1,-1).
FORMULA
a(n) = a(n-1) + 4 if n is even, a(n) = a(n-1) + 6 if n is odd.
a(n) = 2*a(n-1) - a(n-2) - 2*(-1)^n.
From R. J. Mathar, Mar 15 2011: (Start)
G.f.: x*(1 + 4*x + 5*x^2)/( (1+x)*(1-x)^2 ).
a(n) = 5*(n-1) bitwise-OR 1. - Jon Maiga, Nov 24 2018
E.g.f.: ((10*x-9)*exp(x) - exp(-x) + 10)/2. - G. C. Greubel, Dec 04 2018
Sum_{n>=1} (-1)^(n+1)/a(n) = sqrt(5+2*sqrt(5))*Pi/20 + 3*log(phi)/(4*sqrt(5)) + log(5)/8, where phi is the golden ratio (A001622). - Amiram Eldar, Apr 15 2023
MAPLE
[5*n-(9+(-1)^n)/2$n=1..50]; # Muniru A Asiru, Nov 25 2018
MATHEMATICA
nxt[{n_, a_}]:={n+1, If[EvenQ[n+1], a+4, a+6]}; Transpose[NestList[nxt, {1, 1}, 50]][[2]] (* Harvey P. Dale, Feb 16 2013 *)
Table[BitOr[5*n, 1], {n, 0, 50}] (* Jon Maiga, Nov 24 2018 *)
PROG
(Magma) [5*n -(9+(-1)^n)/2: n in [1..60]];
(GAP) Filtered([1..250], n-> n mod 10 =1 or n mod 10 = 5); # Muniru A Asiru, Nov 25 2018
(Python) for n in range(1, 60): print(int(5*n - (9 + (-1)**n)/2), end=', ') # Stefano Spezia, Nov 30 2018
(PARI) vector(50, n, (10*n -9-(-1)^n)/2) \\ G. C. Greubel, Dec 04 2018
(Sage) [(10*n -9-(-1)^n)/2 for n in (1..50)] # G. C. Greubel, Dec 04 2018
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Mar 13 2011
EXTENSIONS
Definition rewritten by R. J. Mathar, Mar 15 2011
STATUS
approved