%I #11 Apr 25 2018 11:48:52
%S 0,0,0,28,144,340,675,1120,1675,2340,3115,4000,4995,6100,7315,8640,
%T 10075,11620,13275,15040,16915,18900,20995,23200,25515,27940,30475,
%U 33120,35875,38740,41715,44800,47995,51300,54715,58240,61875,65620,69475,73440,77515
%N Number of 4step one space for components leftwards or up, two space for components rightwards or down asymmetric quasibishop's tours (antidiagonal moves become knight moves) on an n X n board summed over all starting positions.
%C Row 4 of A187606.
%H R. H. Hardin, <a href="/A187608/b187608.txt">Table of n, a(n) for n = 1..50</a>
%F Empirical: a(n) = 55*n^2  380*n + 640 for n>5.
%F Conjectures from _Colin Barker_, Apr 25 2018: (Start)
%F G.f.: x^4*(28 + 60*x  8*x^2 + 59*x^3  29*x^4) / (1  x)^3.
%F a(n) = 3*a(n1)  3*a(n2) + a(n3) for n>8.
%F (End)
%e Some solutions for 5 X 5:
%e ..0..0..0..0..0....0..0..0..1..0....0..0..0..0..4....0..0..2..0..0
%e ..0..0..0..0..0....0..0..0..0..0....0..0..3..0..0....1..0..0..4..0
%e ..0..0..2..0..0....0..0..2..0..0....0..0..0..2..0....0..3..0..0..0
%e ..1..0..0..4..0....0..0..0..4..0....0..0..0..0..1....0..0..0..0..0
%e ..0..0..0..0..3....0..0..0..0..3....0..0..0..0..0....0..0..0..0..0
%Y Cf. A187606.
%K nonn
%O 1,4
%A _R. H. Hardin_, Mar 11 2011
