login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A187586 T(n,k)=Number of n-step E, S, NW and NE-moving king's tours on a kXk board summed over all starting positions 8

%I

%S 1,4,0,9,6,0,16,20,8,0,25,42,48,5,0,36,72,120,84,0,0,49,110,224,286,

%T 106,0,0,64,156,360,604,578,104,0,0,81,210,528,1038,1484,1069,78,0,0,

%U 100,272,728,1588,2794,3514,1708,34,0,0,121,342,960,2254,4508,7480,7666,2309,13

%N T(n,k)=Number of n-step E, S, NW and NE-moving king's tours on a kXk board summed over all starting positions

%C Table starts

%C .1.4...9...16....25.....36.....49......64......81.....100.....121.....144

%C .0.6..20...42....72....110....156.....210.....272.....342.....420.....506

%C .0.8..48..120...224....360....528.....728.....960....1224....1520....1848

%C .0.5..84..286...604...1038...1588....2254....3036....3934....4948....6078

%C .0.0.106..578..1484...2794...4508....6626....9148...12074...15404...19138

%C .0.0.104.1069..3514...7480..12874...19696...27946...37624...48730...61264

%C .0.0..78.1708..7666..19104..35832...57592...84384..116208..153064..194952

%C .0.0..34.2309.15056..45718..95776..164135..250132..353767..475040..613951

%C .0.0..13.2792.27252.103108.246792..458018..732810.1069534.1468190.1928778

%C .0.0...0.3108.45960.219432.609070.1243461.2111652.3201436.4508924

%H R. H. Hardin, <a href="/A187586/b187586.txt">Table of n, a(n) for n = 1..200</a>

%F Empirical: T(1,k) = k^2

%F Empirical: T(2,k) = 4*k^2 - 6*k + 2

%F Empirical: T(3,k) = 16*k^2 - 40*k + 24

%F Empirical: T(4,k) = 58*k^2 - 204*k + 174 for k>2

%F Empirical: T(5,k) = 202*k^2 - 912*k + 994 for k>3

%F Empirical: T(6,k) = 714*k^2 - 3888*k + 5104 for k>4

%F Empirical: T(7,k) = 2516*k^2 - 15980*k + 24408 for k>5

%F Empirical: T(8,k) = 8819*k^2 - 63926*k + 111127 for k>6

%F Empirical: T(9,k) = 30966*k^2 - 251630*k + 489234 for k>7

%F Empirical: T(10,k) = 108852*k^2 - 978404*k + 2100276 for k>8

%e Some k=4 solutions for 4X4

%e ..0..0..0..0....3..0..0..0....0..0..0..0....0..4..0..0....0..0..0..3

%e ..0..0..0..0....4..2..0..0....4..2..0..0....3..0..0..0....0..0..2..4

%e ..0..1..2..0....1..0..0..0....0..3..1..0....0..2..0..0....0..0..0..1

%e ..0..0..3..4....0..0..0..0....0..0..0..0....1..0..0..0....0..0..0..0

%Y Row 2 is A002943(n-1)

%Y Row 3 is A152750(n-1)

%K nonn,tabl

%O 1,2

%A _R. H. Hardin_ Mar 11 2011

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 18 03:25 EDT 2021. Contains 348065 sequences. (Running on oeis4.)