login
Rank transform of the sequence floor(n*(Pi-2)); complement of A187475.
2

%I #10 Apr 10 2021 23:57:17

%S 1,3,4,6,8,9,11,13,15,16,18,19,21,22,25,26,28,30,31,33,35,36,38,40,41,

%T 43,44,46,48,50,51,53,55,56,58,60,62,63,65,67,68,70,72,73,75,77,78,80,

%U 81,84,85,87,88,90,91,93,95,97,98,100,102,103,105,107,109,110,112,113

%N Rank transform of the sequence floor(n*(Pi-2)); complement of A187475.

%C See A187224.

%t m = Pi-2;

%t seqA = Table[Floor[m*n], {n, 1, 180}] (* A187320 *)

%t seqB = Table[n, {n, 1, 80}]; (* A000027 *)

%t jointRank[{seqA_, seqB_}] := {Flatten@Position[#1, {_, 1}],

%t Flatten@Position[#1, {_, 2}]} &[Sort@Flatten[{{#1, 1} & /@ seqA,

%t {#1, 2} & /@ seqB}, 1]];

%t limseqU = FixedPoint[jointRank[{seqA, #1[[1]]}] &, jointRank[{seqA, seqB}]][[1]] (* A187474 *)

%t Complement[Range[Length[seqA]], limseqU] (* A187475 *)

%t (* _Peter J. C. Moses_, Mar 10 2011 *)

%Y Cf. A187224, A187475.

%K nonn

%O 1,2

%A _Clark Kimberling_, Mar 10 2011