login
Rank transform of the sequence floor((e-1)n); complement of A187473.
2

%I #6 Dec 04 2016 19:46:24

%S 1,3,5,7,9,11,13,14,17,18,20,22,24,26,28,30,32,33,35,38,40,41,43,45,

%T 47,49,51,53,54,56,58,60,62,64,66,68,70,72,74,75,77,79,81,83,85,87,89,

%U 91,93,94,96,98,100,102,104,106,108,110,112,114,115,117,119,121,123,125

%N Rank transform of the sequence floor((e-1)n); complement of A187473.

%C See A187224.

%t m = E-1;

%t seqA = Table[Floor[m*n], {n, 1, 180}] (* A000210 *)

%t seqB = Table[n, {n, 1, 80}]; (* A000027 *)

%t jointRank[{seqA_, seqB_}] := {Flatten@Position[#1, {_, 1}],

%t Flatten@Position[#1, {_, 2}]} &[Sort@Flatten[{{#1, 1} & /@ seqA,

%t {#1, 2} & /@ seqB}, 1]];

%t limseqU = FixedPoint[jointRank[{seqA, #1[[1]]}] &, jointRank[{seqA, seqB}]][[1]] (* A187472 *)

%t Complement[Range[Length[seqA]], limseqU] (* A187473 *)

%t (* by _Peter J. C. Moses_, Mar 10 2011 *)

%Y Cf. A187224, A187473.

%K nonn

%O 1,2

%A _Clark Kimberling_, Mar 10 2011