login
Floor(r*n), where r=1+sqrt(6)+sqrt(5); complement of A187388.
2

%I #6 Mar 30 2012 18:57:19

%S 5,11,17,22,28,34,39,45,51,56,62,68,73,79,85,90,96,102,108,113,119,

%T 125,130,136,142,147,153,159,164,170,176,181,187,193,198,204,210,216,

%U 221,227,233,238,244,250,255,261,267,272,278,284,289,295,301,307,312,318,324,329,335,341,346,352,358,363,369,375,380,386,392,397

%N Floor(r*n), where r=1+sqrt(6)+sqrt(5); complement of A187388.

%C A187387 and A187388 are the Beatty sequences based on r=1+sqrt(6)+sqrt(5) and s=1+sqrt(6)-sqrt(5); 1/r+1/s=1.

%F a(n)=floor(r*n), where r=1+sqrt(6)+sqrt(5).

%t k=6; r=1+k^(1/2)+(k-1)^(1/2); s=1+k^(1/2)-(k-1)^(1/2);

%t Table[Floor[r*n],{n,1,80}] (* A187387 *)

%t Table[Floor[s*n],{n,1,80}] (* A187388 *)

%Y Cf. A187388.

%K nonn

%O 1,1

%A _Clark Kimberling_, Mar 09 2011