login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A187144 McKay-Thompson series of class 12I for the Monster group with a(0) = 1. 0

%I

%S 1,1,2,0,1,0,0,0,-2,0,-2,0,2,0,4,0,3,0,-4,0,-8,0,-4,0,5,0,14,0,7,0,-8,

%T 0,-20,0,-12,0,14,0,28,0,17,0,-20,0,-44,0,-24,0,28,0,66,0,36,0,-40,0,

%U -90,0,-52,0,56,0,124,0,71,0,-80,0,-176,0,-96,0,109,0,244,0,133,0,-144

%N McKay-Thompson series of class 12I for the Monster group with a(0) = 1.

%C Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).

%H J. M. Borwein and P. B. Borwein, <a href="http://dx.doi.org/10.1090/S0002-9947-1991-1010408-0">A cubic counterpart of Jacobi's identity and the AGM</a>, Trans. Amer. Math. Soc., 323 (1991), no. 2, 691-701.

%H D. Ford, J. McKay and S. P. Norton, <a href="http://dx.doi.org/10.1080/00927879408825127">More on replicable functions</a>, Commun. Algebra 22, No. 13, 5175-5193 (1994).

%F Expansion of c(q) / c(q^4) in powers of q where c() is a cubic AGM function.

%F Expansion of eta(q^3)^3 * eta(q^4) / (eta(q) * eta(q^12)^3) in powers of q.

%F Euler transform of period 12 sequence [ 1, 1, -2, 0, 1, -2, 1, 0, -2, 1, 1, 0, ...].

%F Convolution inverse of A123649.

%F a(2*n) = 0 unless n=0. a(2*n - 1) = A058487(n).

%e G.f. = 1/q + 1 + 2*q + q^3 - 2*q^7 - 2*q^9 + 2*q^11 + 4*q^13 + 3*q^15 - 4*q^17 + ...

%t QP = QPochhammer; s = QP[q^3]^3*(QP[q^4]/(QP[q]*QP[q^12]^3)) + O[q]^80; CoefficientList[s, q] (* _Jean-Fran├žois Alcover_, Nov 16 2015, adapted from PARI *)

%o (PARI) {a(n) = my(A); if( n<-1, 0, n++; A = x * O(x^n); polcoeff( eta(x^3 + A)^3 * eta(x^4 + A) / (eta(x + A) * eta(x^12 + A)^3), n))};

%Y Cf. A058487, A123649.

%K sign

%O -1,3

%A _Michael Somos_, Mar 05 2011

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 6 03:02 EST 2016. Contains 278771 sequences.