login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Indices of zeros of the sequence u(n)=abs(u(n-1)-gcd(u(n-1),n-1)), u(1)=1.
21

%I #39 Oct 02 2022 14:51:56

%S 2,5,11,23,47,79,157,313,619,1237,2473,4909,9817,19603,39199,78193,

%T 156019,311347,622669,1244149,2487739,4975111,9950221,19900399,

%U 39800797,79601461,159202369,318404629,636788881,1273577761,2547155419,5094310069,10188620041

%N Indices of zeros of the sequence u(n)=abs(u(n-1)-gcd(u(n-1),n-1)), u(1)=1.

%C For any fixed integer m>=1 define u(1)=1 and u(n)=abs(u(n-1)-gcd(u(n-1),m*n-1)). Then (b_m(k))_{k>=1} is the sequence of integers such that u(b_m(k))=0 and we conjecture that for k large enough m*b_m(k)+m-1 is a prime number. Here for m=1 it appears a(n) is prime for n>=1.

%C See A261301 for the sequence u relevant here (m=1). - _M. F. Hasler_, Aug 14 2015

%C A261301(a(n)-1) = 1; A261301(a(n)) = 0; A261301(a(n)+1) = a(n). - _Reinhard Zumkeller_, Sep 07 2015

%H Moritz Firsching, <a href="/A186253/b186253.txt">Table of n, a(n) for n = 1..315</a>

%H B. Cloitre, <a href="http://arxiv.org/abs/1101.4274">10 conjectures in additive number theory</a>, arXiv:1101.4274 [math.NT], 2011.

%H M. F. Hasler, <a href="https://oeis.org/wiki/User:M._F._Hasler/Work_in_progress/Rowland-Cloitre_type_prime_generating_sequences">Rowland-Cloître type prime generating sequences</a>, OEIS Wiki, August 2015.

%F Conjecture: a(n) is asymptotic to c*2^n with c = 1.1861...

%t a = m = 1; Reap[For[n = 2, n <= 10^7, n++, a = Abs[a - GCD[a, m*n - 1]]; If[a == 0, Print[m*n + m - 1]; Sow[m*n + m - 1]]]][[2, 1]] (* _Jean-François Alcover_, Feb 05 2019, from PARI *)

%t nxt[{n_,a_}]:={n+1,Abs[a-GCD[a,n]]}; Position[NestList[nxt,{1,1},13*10^5][[All,2]],0]// Flatten (* The program generates the first 20 terms of the sequence. *) (* _Harvey P. Dale_, Oct 02 2022 *)

%o (PARI) a=1;m=1;for(n=2,1e7,a=abs(a-gcd(a,m*n-1));if(a==0,print1(m*n+m-1,",")))

%o (PARI)

%o next_a(last_a) = {

%o local(A=last_a,B=last_a,C=2*last_a+1);

%o while(A>0,

%o D=divisors(C);

%o k1=10*D[2];

%o for(j=2,#D, d=D[j];k=((A+1-B+d)/2)%d;

%o if(k==0,k=d); if(k<=k1,k1=k;d1=d));

%o if(k1-1+d1==A,B=B+1);

%o A = max(A-(k1-1)-d1,0);

%o B = B + k1;

%o C = C - (d1 - 1);

%o );

%o return(B);

%o }

%o a=2

%o for(n=1,99,print1(a,", ");a=next_a(a)) \\ _Jan Büthe_ and _Moritz Firsching_, Aug 04 2015

%o (PARI) m=a=k=1; for(n=1, 30, while( a>d=vecmin(apply(p->a%p, factor(N=m*(k+a)+m-1)[,1])), a-=d+gcd(a-d,N); k+=1+d); k+=a+1; print1(a=N,",")) \\ _M. F. Hasler_, Aug 22 2015

%o (Haskell)

%o a186253 n = a186253_list !! (n-1)

%o a186253_list = filter ((== 0) . a261301) [1..]

%o -- _Reinhard Zumkeller_, Sep 07 2015

%Y Cf. A106108.

%Y Cf. A261301 - A261310; A186254 - A186263.

%K nonn

%O 1,1

%A _Benoit Cloitre_, Feb 16 2011

%E Definition clarified by _M. F. Hasler_, Aug 14 2015