%I #6 Mar 31 2012 12:36:05
%S 520017,10084236,143369699,1662436696,16382439469,140871930232,
%T 1078197169699,7459396065112,47221234070168,276218909139304,
%U 1504985434117375,7689047974774610,37044742671636217,169120726715615719
%N Number of (n+2)X3 0..5 arrays with each 3X3 subblock having rows and columns in lexicographically nondecreasing order
%C Column 1 of A186180
%H R. H. Hardin, <a href="/A186172/b186172.txt">Table of n, a(n) for n = 1..200</a>
%F Empirical: a(n) = (1/12696403353658275925965100847566516959580321051449436762275840000000000000)*n^55
%F + (1/491156802849449745685303707836228895921869286322995619430400000000000)*n^54
%F + (18559/6412324926090038346447020630084099474535515682550220587008000000000000)*n^53
%F + (49451/24197452551283163571498191056921130092586851632264983347200000000000)*n^52
%F + (175435499/186134250394485873626909161976316385327591166402038333440000000000000)*n^51
%F + (5368081/16844728542487409378000829138128179667655309176655052800000000000)*n^50
%F + (8845429/105010296220749514984340207222985774782378046337843200000000000)*n^49
%F + (85093617373/4692460093978635469585945259907135764561121842068193280000000000)*n^48
%F + (93036113835839/28439152084719002845975425817619004633703768739807232000000000000)*n^47
%F + (67216078924859/133119435290174055874778588933535766370528279207608320000000000)*n^46
%F + (10780988237320811/159164542194773327676365704159662329356066420791705600000000000)*n^45
%F + (201153888581473/25164354497197364059504459155677838633370185105408000000000)*n^44
%F + (9455408439032138665547/11286212991993017780687749931321510627066528019775488000000000000)*n^43
%F + (412395955523442423779/5249401391624659432878023223870470059100710706872320000000000)*n^42
%F + (176840499206542146961/26673787559068391427225727763569461682422310502400000000000)*n^41
%F + (35506840469911316449/70194177787022082703225599377814372848479764480000000000)*n^40
%F + (137064491813553482046697/3913728674110800770420432598819124812611321856000000000000)*n^39
%F + (9473400758793353618264417/4293059299447693768168874527627747679064419205120000000000)*n^38
%F + (14479688170558056392346799543/114156349553495493380854163575556017829667510681600000000000)*n^37
%F + (45234665225453195243369025917/6787674838315948255077815131519547006088338472960000000000)*n^36
%F + (1329768571744412422626775035265019/4148023512304190600325331469261945392609540177920000000000000)*n^35
%F + (6272807035110247314632781431519/443638878321303807521425825589512876214924083200000000000)*n^34
%F + (107383643088161393069377664976151/187567908113786536268249889495566105752633344000000000000)*n^33
%F + (54342328708285586923881121928224991/2550923550347496893248198497139699038235813478400000000000)*n^32
%F + (14507812329315950837597321306713032198661/19897203692710475767335948277689652498239345131520000000000000)*n^31
%F + (294895057326231001539812300710678902019/12836905608200306946668353727541711289186674278400000000000)*n^30
%F + (1426201040389239055901246123911263455137/2139484268033384491111392287923618548197779046400000000000)*n^29
%F + (262961690756808832798796838743085065003/14755063917471617180078567502921507228950200320000000000)*n^28
%F + (5711740490195223581019217882892372262301/13009937780683396114997824797346418657329152000000000000)*n^27
%F + (50456509312118928749387352660025578132127/5063868090019844949376076421120990646621962240000000000)*n^26
%F + (8765588185373284736326656784305894065716032949/42090238580733698738595275202805034130890922393600000000000)*n^25
%F + (613120594591414915571810949885324444354784237/153055413020849813594891909828381942294148808704000000000)*n^24
%F + (333953167899215933886702107966177726043085597379/4713663082163852954915149396888574309783568384000000000000)*n^23
%F + (248252677827010227413667674646896703769417537/215728287513219814870258553633344362003824640000000000)*n^22
%F + (2020133268998161194779644889873928642492219245221/117841577054096323872878734922214357744589209600000000000)*n^21
%F + (344459365817572327025126365665988166974265622199/1473019713176204048410984186527679471807365120000000000)*n^20
%F + (531239996783361705148242828770308069316597369332837969/182191495381136780730604301242237840955830960128000000000000)*n^19
%F + (49764721779126547316503372033547377674781114840726349/1500400550197597017781447186700782219636254965760000000000)*n^18
%F + (1386483729233759184223718587982469249187742523083/4037606860908738433410854029157684635238400000000000)*n^17
%F + (22417033248208544340487876090746989212065115956770563/6946298843507393600840033271762880646464143360000000000)*n^16
%F + (10205302967308652026411402861098490021840634806649229581/371887556792715398145638058590344156167536640000000000000)*n^15
%F + (98447363759058494598250036525065816273700261948997221/468110211347473927735768185638195441329766400000000000)*n^14
%F + (1103403101290663252901029836063670045785176312165053985189/763214690417777283012525379334274484134739968000000000000)*n^13
%F + (338277447930883521348263856271729816636547317908286459487/38160734520888864150626268966713724206736998400000000000)*n^12
%F + (9785516610789727410563023622262865748440953067219363619861/203170577310287934135278746813522142767349760000000000000)*n^11
%F + (467676509033865587774360459149434794983360708197004817657/2031705773102879341352787468135221427673497600000000000)*n^10
%F + (5474978896561688033350500194339078573258785044431243849/5704311310384428258278435543748829575905280000000000)*n^9
%F + (1952387147553096146108347298102430632749169200098508309/564362714750799817042440963370894841020416000000000)*n^8
%F + (473579517096999116285651288471095622863176148266287383183/44409359985731497724392683988890035709689856000000000)*n^7
%F + (345545511614010782683007234721639900205065990737390933/12461810200077716198171416425453836551188480000000)*n^6
%F + (97190773629094524390807272747535085877272650809/1632213837305931914919615449316229632000000)*n^5
%F + (84196163288657658443190680443160874871988223709/826259444913720557887537390132330598400000)*n^4
%F + (126178701900377420836396891364977720400270407/962050982614742435565302928394819200000)*n^3
%F + (23588670590447441930529164070162527/202742333053195459323514176000)*n^2
%F + (49688074639397160884753239/801216384024574758240)*n
%F + 5951
%e Some solutions for 4X3
%e ..0..0..0....0..0..0....0..0..0....0..0..0....0..0..0....0..0..0....0..0..0
%e ..0..3..3....0..3..3....3..3..4....0..3..3....0..0..3....0..3..3....0..0..2
%e ..3..4..5....1..5..5....3..5..0....1..5..5....0..1..1....1..0..0....0..2..0
%e ..4..1..3....3..0..2....5..5..1....5..1..3....5..2..3....3..2..5....3..3..4
%K nonn
%O 1,1
%A _R. H. Hardin_ Feb 13 2011