%I #10 Jun 12 2015 23:07:38
%S 1,9,30,39,0,18,49,0,192,110,81,78,130,0,30,121,0,210,320,270,
%T 0,407,0,192,190,0,0,0,351,210,418,0,510,448,0,462,611,0,960,50,
%U 0,0,350,0,450,361,162,960,0,0,798,782,0,1170,290,441,702,850,0,0,576
%N Expansion of exp( Sum_{n>=1} 3*sigma(2n)*x^n/n ) in powers of x.
%C When is a(n) zero (A258867)?
%H Paul D. Hanna, <a href="/A185653/b185653.txt">Table of n, a(n) for n = 0..1024</a>
%F Expansion of q^(1/8)*eta(q)^9/eta(q^2)^3 in powers of q; equals the selfconvolution cube of A115110 [See formula of Michael Somos for A115110].
%e G.f. = 1  9*x + 30*x^2  39*x^3 + 18*x^5 + 49*x^6  192*x^8 + 110*x^9 + ...
%o (PARI) {a(n)=polcoeff(exp(sum(m=1,n,3*sigma(2*m)*x^m/m)+x*O(x^n)),n)}
%o (PARI) {a(n)=local(X=x+x*O(x^n));polcoeff(eta(X)^9/eta(X^2)^3,n)}
%Y Cf. A115110, A000203, A258867.
%K sign
%O 0,2
%A _Paul D. Hanna_, Feb 16 2011
