The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A185391 a(n) = Sum_{k=0..n} A185390(n,k) * k. 1

%I

%S 0,1,10,114,1556,25080,468462,9971920,238551336,6339784320,

%T 185391061010,5917263922944,204735466350780,7633925334590464,

%U 305188474579874550,13023103577435351040,590850477768105474128,28401410966866912051200,1441935117039649859464986

%N a(n) = Sum_{k=0..n} A185390(n,k) * k.

%C The total number of elements, x in the domain of definition of all partial functions on n labeled objects such that for all i in {1,2,3,...} (f^i)(x) is defined.

%H G. C. Greubel, <a href="/A185391/b185391.txt">Table of n, a(n) for n = 0..385</a>

%F a(n) = (n+1)^(n+1) - A001865(n+1). - _Seiichi Manyama_, Jun 01 2019

%t nn=20; tx=Sum[n^(n-1) x^n/n!,{n,1,nn}]; txy=Sum[n^(n-1) (x y)^n/n!, {n,1,nn}]; f[list_] := Select[list, #>0&];

%t D[Range[0,nn]! CoefficientList[Series[Exp[tx]/(1-txy),{x,0,nn}],x],y]/.y->1

%o (PARI) {a(n) = (n+1)^(n+1)-sum(k=1, n+1, binomial(n+1, k)*k^k*(n+1-k)^(n+1-k))/(n+1)} \\ _Seiichi Manyama_, Jun 01 2019

%Y Cf. A000312, A001865, A076728, A185390.

%K nonn

%O 0,3

%A _Geoffrey Critzer_, Feb 09 2012

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 29 11:16 EST 2020. Contains 331337 sequences. (Running on oeis4.)