login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

G.f. A(x) satisfies: x = Sum_{n>=0} -(-A(x))^A000069(n), where A000069 is the odious numbers.
0

%I #11 Mar 30 2012 18:37:25

%S 1,1,2,6,20,70,255,961,3717,14663,58758,238524,978844,4054152,

%T 16924986,71145392,300876074,1279225578,5464762332,23444755016,

%U 100968932096,436355661280,1891770895672,8225329914410,35858439130786,156708088823482,686392551655052

%N G.f. A(x) satisfies: x = Sum_{n>=0} -(-A(x))^A000069(n), where A000069 is the odious numbers.

%C The odious numbers (A000069) have an odd number of 1's in their binary expansion.

%F Equals the series reversion of the g.f. of the Thue-Morse sequence (A010060) evaluated at x = -x.

%e G.f.: A(x) = x + x^2 + 2*x^3 + 6*x^4 + 20*x^5 + 70*x^6 + 255*x^7 +...

%e Series reversion of the g.f. yields:

%e G(x) = x - x^2 - x^4 + x^7 - x^8 + x^11 + x^13 - x^14 - x^16 + x^19 + x^21 - x^22 + x^25 +..+ -(-x)^A000069(n) +...

%o (PARI) {odious(n)=if(n==0, 1, if(n%2==0, odious(n/2)+n, -odious((n-1)/2)+3*n))}

%o {a(n)=polcoeff(serreverse(sum(k=1,n+1,-(-x)^odious(k-1)+x^2*O(x^n))),n)}

%Y Cf. A000069 (odious numbers), A010060 (Thue-Morse).

%K nonn

%O 1,3

%A _Paul D. Hanna_, Jan 24 2012