%I
%S 1,2,3,3,4,4,5,5,5,5,6,6,7,7,7,7,7,7,8,8,9,9,9,9,9,9,10,10,10,10,11,
%T 11,11,11,11,11,11,11,11,11,12,12,13,13,13,13,13,13,13,13,13,13,13,13,
%U 14,14,14,14,14,14,15,15,15,15,16,16,16,16,17,17,17,17
%N Least k such that lambda(1) + lambda(2) +...+ lambda(k) >= n.
%C Lambda is the function in A002322.
%H Robert Israel, <a href="/A185195/b185195.txt">Table of n, a(n) for n = 1..10000</a>
%e a(3) = 3 because lambda(1) + lambda(2) + lambda(3) = 1+1+2 > 3.
%p with(numtheory):for n from 1 to 100 do:ii:=0:for k from 1 to 1000 while(ii=0) do: s:=sum(lambda(i),i=1..k):if s>=n then ii:=1: printf(`%d, `,k):else fi:od:od:
%t a[n_] := (k = 1; While[ Total[ CarmichaelLambda[ Range[k]]] < n, k++]; k); Table[ a[n], {n, 1, 77}]
%Y Cf. A002322, A038567.
%K nonn
%O 1,2
%A _Michel Lagneau_, Jan 21 2012
|