%I #13 Jun 02 2017 20:11:39
%S 2,7,15,25,38,54,73,94,118,145,174,206,241,279,319,362,408,456,507,
%T 561,618,677,739,804,871,941,1014,1090,1168,1249,1333,1419,1508,1600,
%U 1695,1792,1892,1995,2101,2209,2320,2434,2550,2669,2791,2916,3043,3173,3306,3441,3579,3720
%N a(n) = [e]+[2*e]+...+[n*e], where []=floor.
%C It is interesting to note that a(n)/n^2 converges to e/2 .
%H G. C. Greubel, <a href="/A184976/b184976.txt">Table of n, a(n) for n = 1..5000</a>
%F Partial sums of A022843.
%e a(3) = 15 because [2.71828...] + [2*2.71828...] + [3*2.71828...] = 2 + 5 + 8 = 15.
%p with(numtheory):Digits:=100:s:=0:e:=exp(1):for n from 1 to 100 do: s:=s+floor(n*e):printf(`%d,
%p `,s):od:
%t Accumulate[Table[Floor[E n],{n,60}]] (* _Harvey P. Dale_, Jan 14 2012 *)
%o (PARI) for(n=1,50, print1(sum(k=1,n, floor(exp(1)*k)), ", ")) \\ _G. C. Greubel_, Jun 02 2017
%Y Cf. A001113 (e), A022843.
%K nonn
%O 1,1
%A _Michel Lagneau_, Mar 27 2011