Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #10 Oct 05 2020 06:10:25
%S 1,112,90720,105100800,142542960000,211337613527040,
%T 331831362513530880,542307255307827609600,912855634598629193472000,
%U 1571864775032876891607040000,2755743023914838714304931102720
%N a(n) = C(2n,n) * (8^n/n!^2) * Product_{k=0..n-1} (8k+1)*(8k+7).
%F Self-convolution of A184897, where A184897(n) = (8^n/n!^2) * Product_{k=0..n-1} (16k+1)*(16k+7).
%F a(n) ~ sqrt(2-sqrt(2)) * 2^(11*n - 1) / (Pi^(3/2) * n^(3/2)). - _Vaclav Kotesovec_, Oct 05 2020
%e G.f.: A(x) = 1 + 112*x + 90720*x^2 + 105100800*x^3 +...
%e A(x)^(1/2) = 1 + 56*x + 43792*x^2 + 50098048*x^3 +...+ A184897(n)*x^n +...
%o (PARI) {a(n)=(2*n)!/n!^2*(8^n/n!^2)*prod(k=0,n-1,(8*k+1)*(8*k+7))}
%Y Cf. A184897; variants: A184423, A008977, A184892, A001421, A184896.
%K nonn
%O 0,2
%A _Paul D. Hanna_, Jan 25 2011