%I #10 Dec 06 2018 11:39:01
%S 70,5,8075,17267,92,143,245,1518,60207,106,236818619,2001863,652,679,
%T 3406,138,225643,77,29,158,3128,778998480,724,413,331668,182,195,357,
%U 8033,9010,126035,1835940,253,4017,385,788,1612,8687,150878,8758575,33158210,143,531,3770,10384,751228,274,495,1281,1133000,1012,4433,121268,56855,440,106403,3069,2725,16332,655,453765,1525,1997277,4035066,430,2619,2420957,795,3465
%N Irregular triangle of the square root of the sums of squares mentioned in A184763.
%C Sequence A184762 gives the length of row n. A180442 lists the nonempty rows. These numbers are in Table 3 of the paper by Bremner, Stroeker, and Tzanakis.
%H A. Bremner, R. J. Stroeker, N. Tzanakis, <a href="https://doi.org/10.1006/jnth.1997.2040">On Sums of Consecutive Squares</a>, J. Number Theory 62 (1997), 39-70.
%e The triangle is
%e (row 1) 70
%e (row 3) 5, 8075, 17267
%e (row 7) 92, 143, 245, 1518, 60207
%e (row 9) 106, 236818619
%e (row 11) 2001863
%e (row 13) 652
%e (row 15) 679, 3406
%K nonn,tabf
%O 1,1
%A _T. D. Noe_, Jan 24 2011