%I #4 Mar 30 2012 18:57:16
%S 1,2,3,4,5,7,8,9,10,12,13,14,15,17,18,19,20,22,23,24,25,27,28,29,30,
%T 31,33,34,35,36,38,39,40,41,43,44,45,46,48,49,50,51,52,54,55,56,57,59,
%U 60,61,62,64,65,66,67,69,70,71,72,73,75,76,77,78,80,81,82,83,85,86,87,88,90,91,92,93,94,96,97,98,99,101,102,103,104,106,107,108,109,111,112,113,114,115,117,118,119,120,122,123,124,125,127,128,129,130,132,133,134,135,137,138,139,140,141,143,144,145,146,148
%N Lower s-Wythoff sequence, where s(n)=4n+1. Complement of A184487.
%C See A184117 for the definition of lower and upper s-Wythoff sequences.
%t k=4; r=-1; d=Sqrt[4+k^2];
%t a[n_]:=Floor[(1/2)(d+2-k)(n+r/(d+2))];
%t b[n_]:=Floor[(1/2)(d+2+k)(n-r/(d+2))];
%t Table[a[n],{n,120}]
%t Table[b[n],{n,120}]
%Y Cf. A184117,A184487.
%K nonn
%O 1,2
%A _Clark Kimberling_, Jan 15 2011