%I #5 Mar 31 2012 12:35:57
%S 6,19,19,60,104,60,190,561,561,190,602,3050,5074,3050,602,1908,16581,
%T 46514,46514,16581,1908,6048,90185,425802,723635,425802,90185,6048,
%U 19172,490546,3901193,11226643,11226643,3901193,490546,19172,60776,2668339
%N T(n,k)=Half the number of (n+1)X(k+1) binary arrays with no 2X2 subblock containing exactly one 1
%C Table starts
%C ......6.......19..........60............190..............602
%C .....19......104.........561...........3050............16581
%C .....60......561........5074..........46514...........425802
%C ....190.....3050.......46514.........723635.........11226643
%C ....602....16581......425802.......11226643........294738261
%C ...1908....90185.....3901193......174401423.......7751834608
%C ...6048...490546....35741495.....2708892872.....203828058160
%C ..19172..2668339...327471410....42079740149....5360172454105
%C ..60776.14514611..3000373034...653660484007..140957350430161
%C .192664.78953456.27490276713.10153933128956.3706813750652670
%H R. H. Hardin, <a href="/A184197/b184197.txt">Table of n, a(n) for n = 1..391</a>
%e Some solutions for 4X3
%e ..0..1..0....1..0..1....1..1..0....0..1..1....0..1..1....0..0..1....0..1..0
%e ..0..1..1....0..1..1....1..1..1....1..1..1....0..1..1....1..1..0....1..1..1
%e ..0..1..1....1..0..1....0..0..0....0..1..1....1..0..1....0..1..1....1..1..0
%e ..1..1..0....1..1..0....1..1..1....0..1..1....1..1..0....1..1..1....0..1..1
%K nonn,tabl
%O 1,1
%A _R. H. Hardin_ Jan 10 2011