login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of strings of numbers x(i=1..n) in 0..5 with sum i^2*x(i) equal to n^2*5
1

%I #10 Jul 22 2022 05:15:15

%S 1,2,4,14,53,180,656,2195,7250,23044,71123,213368,624425,1784399,

%T 4986210,13657266,36691985,96863639,251472815,642811767,1619203005,

%U 4022796235,9864987052,23894800443,57205375668,135438579331,317296680619

%N Number of strings of numbers x(i=1..n) in 0..5 with sum i^2*x(i) equal to n^2*5

%C Column 5 of A183953

%H R. H. Hardin, <a href="/A183949/b183949.txt">Table of n, a(n) for n = 1..54</a>

%e All solutions for n=4

%e ..0....1....0....3....3....3....4....2....4....1....5....0....3....5

%e ..3....1....4....0....1....4....3....3....2....5....4....0....5....0

%e ..4....3....0....5....1....5....0....2....4....3....3....0....1....3

%e ..2....3....4....2....4....1....4....3....2....2....2....5....3....3

%t r[n_, k_, s_] := r[n, k, s] = Which[s < 0, 0, n == 0, If[s == 0, 1, 0], True, Sum[r[n - 1, k, s - c*n^2], {c, 0, k}]];

%t T[n_, k_] := r[n, k, k*n^2];

%t a[n_] := T[n, 5];

%t Table[a[n], {n, 1, 40}] (* _Jean-François Alcover_, Jul 22 2022, after _R. J. Mathar_ in A183953 *)

%K nonn

%O 1,2

%A _R. H. Hardin_, Jan 08 2011