Maple-assisted derivation of recurrence for A183520

Robert Israel

17 November 2019
There are $3^{6}=729$ possible configurations for a 2×3 array. Consider the 729×729 transition matrix T such that $T_{i j}=1$ if the top two rows of a 3×6 sub-array could be in configuration i while the bottom two rows are in configuration j (so the middle row is common to both, and each element there is the sum $\bmod 3$ of its horizontal and vertical or its diagonal and antidiagonal neighbours, and 0 otherwise. The

```
following Maple code computes it. I'm encoding a \(2 \times 3\) array as
\(\left[\begin{array}{lll}x_{1} & x_{2} & x_{3} \\ x_{4} & x_{5} & x_{6}\end{array}\right]\)
\(\left[>\right.\) Configs: \(=\operatorname{map}\left(t->\right.\) convert \(\left(t+3^{\wedge} 6\right.\), base, 3\(\left.)[1 . .6],\left[\$ 0.3^{\wedge} 6-1\right]\right):\)
\(\mathrm{q}:=\operatorname{proc}(\mathrm{a}, \mathrm{b}) \operatorname{local} \mathrm{A}, \mathrm{B}\);
    A:= Configs [a]; B:= Configs [b];
    if \(A[4 . .6]<>B[1 . .3]\) then return 0 fi;
    if \(A[4]<>A[1]+A[5]+B[4] \bmod 3\) and \(A[4]<>A[2]+B[5] \bmod 3\)
    then return 0 fi;
    if \(A[5]<>A[2]+A[4]+A[6]+B[5] \bmod 3\) and \(A[5]<>A[1]+A[3]+B\)
    [4]+B[6] mod 3 then return 0 fi;
    if \(A[6]<>A[3]+A[5]+B[6] \bmod 3\) and \(A[6]<>A[2]+B[5] \bmod 3\)
    then return 0 fi;
    1
end proc:
\(T:=\) Matrix \(\left(3^{\wedge} 6,3^{\wedge} 6, q\right):\)
```

Thus for $n \geq 1, \quad a(n)=u^{T} T^{n} v$ where u and v are column vectors with entries 1 for configurations where the top row and the bottom row is 0 , respectively, and otherwise 0 .

```
[> uT:= Vector[row] (3^6,proc(a) if Configs[a][1..3]=[0,0,0] then 1
    else 0 fi end proc):
    v:= Vector(3^6,proc(a) if Configs[a][4..6]=[0,0,0] then 1 else 0
    fi end proc):
```

To check, here are the first few entries of our sequence. For future use, we pre-compute $T^{n} v$.

```
> V[0]:= v:
    for nn from 1 to 200 do V[nn]:= T . V[nn-1] od:
> seq(uT. V[n], n = 1 .. 30);
5, 31, 101, 543, 2233, 10003, 47685, 215451, 994397, 4603823, 21240401, 98257363,
    454235165, 2100740935, 9717553917, 44943606231, 207898873245, 961691911899,
    4448501263357, 20578124472715, 95191234404373, 440340646073843,
    2036961372499565, 9422737080433915, 43588479047668973, 201635356321866775,
    932742687142041629, 4314764828063477251, 19959629263126736233,
    92331071936304234687
```

To find a linear recurrence, we see when the vectors $v, T v, \ldots, T^{n} v$ are linearly dependent.

```
> M:= v:
    for nn from 1 to 200 do
        M:= <M|V[nn]>;
```

```
                if LinearAlgebra:-Rank(M) < nn+1 then printf("Success for n=
        %d\n",nn); break fi;
    od:
Success for n=157
[The recurrence is then obtained from the null space of the matrix formed by these vectors.
[> W:= LinearAlgebra:-NullSpace (M) [1]:
[It turns out that \(W_{1}=0\), so the recurrence is of order 156 .
```

```
> W[1];
```

> W[1];
0

```
\(>\operatorname{Rec}:=\operatorname{sort}(\operatorname{add}(\mathrm{W}[\mathrm{i}] * \mathrm{a}(\mathrm{k}+\mathrm{i}-2), \mathrm{i}=1 . .158)\), \([\operatorname{seq}(\mathrm{a}(\mathrm{k}+\mathrm{i}-2), \mathrm{i}=1 . .158)])=\)
```

$>\operatorname{Rec}:=\operatorname{sort}(\operatorname{add}(\mathrm{W}[\mathrm{i}] * \mathrm{a}(\mathrm{k}+\mathrm{i}-2), \mathrm{i}=1 . .158)$, $[\operatorname{seq}(\mathrm{a}(\mathrm{k}+\mathrm{i}-2), \mathrm{i}=1 . .158)])=$
$0 ;$
$0 ;$
Rec:=-2561388056102160669081600a(k)-77049003375935472355246080a(k+1)
-316018333793162981472731136a(k+2) + 1100480855039041142544924672a(k
+3)+2595445099836205573550899200a(k+4)
-3367872150369771228932079616a(k+5) - 7877288559719682725610782720a(k
+6)-2925556734294970797468418048a(k+7)
+12207852108388671916004081664a(k+8) + 19377049870889473810819448832a(k
+9)+1942854762846129583427813376 a(k+10)
-19778686674848397489364008960a(k+11)
-28037538742483992984768479232a(k+12) + 2140119667548971564927729664a(k
+13)+16941545739517085077620867072a(k+14)
+ 10420976691219718882014167040 a(k+15) - 3939465655539099065477939200a(k
+16)-1017973133500470901569896448a(k+17)
+4357554009108113217531910144a(k+18) - 5564240293105458990098998272a(k
+ 19) + 10869319584082331204074271744a(k+20)
+27001378109369146778260411904a(k+21) - 9406570396853318910791296512a(k
+22)-30520887840521442220642322688a(k+23)
-10960900361409092995263526144a(k+24) - 7512150936320435640488943744 a(k
+25) - 773423918643848437150942208a(k+26)
+17955620266802583423690168064a(k+27)
+ 10315716642150103484994694592a(k+28) - 4539283081295042432597319488a(k
+29)+1444474846712240109849730752a(k+30)
-1481301068183270495815033808a(k+31)-3482004251140012573557448432a(k
+32)+3712762077683286679683838800 a(k+33)
+2362104346657670768890599008a(k+34)-1840997231825759895382499160a(k
+35)+635281536436489060303527556a(k+36)
-534728345565988594854190144a(k+37) - 1918318115195720943877032768a(k
+38) +270281369435284120959828512a(k+39)
-134239949870593185831649750a(k+40)-622666473955073750435748180a(k
+41)+184692298808030792293602866 a(k+42)
+381283713301820374288261626a(k+43)+11277647728823460989468563a(k
+44)-71086173949037692638130033a(k+45)
+133126235121552242433357347a(k+46) - 16555785704413713557037966a(k
+47) + 104027300089749194514335959a(k+48)

```
\(+60935123295067609019554920 a(k+49)-45480035692767309162020933 a(k\)
\(+50)+888358808452738347644963 a(k+51)+13128488103735144365546335 a(k\)
\(+52)-10920390227575680782994240 a(k+53)\)
\(-15557213938053471242979665 a(k+54)+1637392232900581052681632 a(k+55)\)
\(-2193760861361967674972155 a(k+56)-4665182295192152093862572 a(k+57)\)
\(-1783081530634384555850606 a(k+58)-1481674458667282187830430 a(k+59)\)
\(+677029505422844291129492 a(k+60)+641429095480021676336013 a(k+61)\)
\(-101688348088497652710871 a(k+62)+13316267734229691422579 a(k+63)\)
\(+843747295673404651515474 a(k+64)+272909793877748599433803 a(k+65)\)
\(-167018547594340259562327 a(k+66)+26159179646217879490741 a(k+67)\)
\(+87832345790927860016811 a(k+68)-55709913411021392694079 a(k+69)\)
\(-38249319915267454715182 a(k+70)-11011353679143579495625 a(k+71)\)
\(-10314155799565902970608 a(k+72)-3375661247588051281611 a(k+73)\)
\(-4650865271464657858637 a(k+74)+1179119683501878969154 a(k+75)\)
\(+3495562379154822826353 a(k+76)+2124846101902787602727 a(k+77)\)
\(+920876593085151985931 a(k+78)+1045549253675034741085 a(k+79)\)
\(+670728319008985813374 a(k+80)-248611538453314872897 a(k+81)\)
\(-114089976601368798655 a(k+82)-74198473570294681649 a(k+83)\)
\(-154911067614781003085 a(k+84)-181807370676634362316 a(k+85)\)
\(+13401796752480348249 a(k+86)-13085957902324091208 a(k+87)\)
\(-31555379176785648557 a(k+88)+3271214117831083322 a(k+89)\)
\(+21813694047164289016 a(k+90)+5758441714980051803 a(k+91)\)
\(-2709106808626704230 a(k+92)+4301867205300990375 a(k+93)\)
\(+3849683713131349387 a(k+94)-920194474879762536 a(k+95)\)
\(-1114308768458078085 a(k+96)+596847364531653681 a(k+97)\)
\(-115582139483861326 a(k+98)-418199401917028307 a(k+99)\)
\(-115144828531162410 a(k+100)+51316729574978283 a(k+101)\)
\(-30741678627481593 a(k+102)-32340440679818967 a(k+103)\)
\(+11959867393390996 a(k+104)+12245986656136582 a(k+105)\)
\(-139186832912364 a(k+106)+1067681197661017 a(k+107)\)
\(+2436634179334821 a(k+108)+1055384646434213 a(k+109)\)
\(-475431278971 a(k+110)-14587495544962 a(k+111)+113331162673890 a(k\)
\(+112)-24997568028242 a(k+113)-55917581616454 a(k+114)\)
\(-21238723541765 a(k+115)-13720588742392 a(k+116)-9670492815688 a(k\)
\(+117)-5495411715627 a(k+118)-2041898533664 a(k+119)\)
\(-577062754545 a(k+120)+190782479752 a(k+121)+251111888225 a(k+122)\)
\(+192352834495 a(k+123)+148062637670 a(k+124)+110504245767 a(k+125)\)
\(+40422745910 a(k+126)+12651556342 a(k+127)+3179193845 a(k+128)\)
\(-660032865 a(k+129)-1812756206 a(k+130)-1961187858 a(k+131)\)
\(-1009861370 a(k+132)-327656849 a(k+133)-156454544 a(k+134)\)
\(-51533822 a(k+135)+18276217 a(k+136)+13148091 a(k+137)\)
\(+10969601 a(k+138)+5723970 a(k+139)+2029861 a(k+140)+499469 a(k\)
\[
\left[\begin{array}{l}
+141)+128412 a(k+142)-92232 a(k+143)-64812 a(k+144)-51483 a(k \\
+145)-14784 a(k+146)-3051 a(k+147)+115 a(k+148)-83 a(k+149) \\
+504 a(k+150)+278 a(k+151)+64 a(k+152)-24 a(k+153)-9 a(k+154) \\
-3 a(k+155)+a(k+156)=0
\end{array}\right.
\]```

