%I
%S 1,2,2,3,7,3,4,13,13,4,6,28,29,28,6,9,69,89,89,69,9,13,149,273,361,
%T 273,149,13,19,330,751,1620,1620,751,330,19,28,755,2221,6392,10459,
%U 6392,2221,755,28,41,1681,6485,26243,56472,56472,26243,6485,1681,41,60,3756,18647
%N T(n,k)=Number of nXk binary arrays with every 1 having exactly one kingmove neighbor equal to 1
%C Table starts
%C ..1....2.....3.......4........6..........9..........13............19
%C ..2....7....13......28.......69........149.........330...........755
%C ..3...13....29......89......273........751........2221..........6485
%C ..4...28....89.....361.....1620.......6392.......26243........109483
%C ..6...69...273....1620....10459......56472......329520.......1939754
%C ..9..149...751....6392....56472.....413450.....3352423......27025949
%C .13..330..2221...26243...329520....3352423....37904950.....428516444
%C .19..755..6485..109483..1939754...27025949...428516444....6750242518
%C .28.1681.18647..447624.11093629..212040472..4696093253..102708841482
%C .41.3756.54395.1841540.64352261.1694099411.52414238887.1598799987052
%H R. H. Hardin, <a href="/A183442/b183442.txt">Table of n, a(n) for n = 1..480</a>
%e Some solutions for 4X3
%e ..0..0..1....1..0..0....0..1..1....0..1..1....0..0..0....0..0..0....1..1..0
%e ..0..1..0....1..0..0....0..0..0....0..0..0....0..0..0....0..0..0....0..0..0
%e ..0..0..0....0..0..1....1..0..1....0..1..1....0..1..0....0..1..0....0..0..0
%e ..0..1..1....0..1..0....1..0..1....0..0..0....1..0..0....0..1..0....1..1..0
%Y Column 1 is A000930(n+1)
%K nonn,tabl
%O 1,2
%A _R. H. Hardin_ Jan 04 2011
