login
G.f.: A(x) = Sum_{n>=0} (4n)!/n!^4 * x^(2n)/(1-2*x)^(4n+1).
3

%I #7 Mar 12 2022 13:24:01

%S 1,2,28,248,3976,52112,850144,13032896,217878616,3594283952,

%T 61577419168,1056910842176,18485891235904,325146542386304,

%U 5781811796793088,103413141115923968,1863085674077321176,33737014083314312624

%N G.f.: A(x) = Sum_{n>=0} (4n)!/n!^4 * x^(2n)/(1-2*x)^(4n+1).

%F Row sums of triangle A183065.

%o (PARI) {a(n)=polcoeff(sum(m=0,n,(4*m)!/m!^4*x^(2*m)/(1-2*x+x*O(x^n))^(4*m+1)),n)}

%Y Cf. A183065, A183066, A183068.

%K nonn

%O 0,2

%A _Paul D. Hanna_, Dec 22 2010