Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #36 Jun 05 2017 19:01:06
%S 4,4,2,1,12,20,35,28,80,114,211,228,736,1214,2101,2536,7799,13830,
%T 22107,27265,82611,144324,259260,354029,901774,1651718,2913981,
%U 3913728,11048656,19782855,33483206,49533124
%N Number of n-digit terms in A048398.
%C Also, number of n-digit primes in A033075.
%C Appears to be strictly increasing for n >= 8. - _Chai Wah Wu_, May 31 2017
%p A182781aux := proc(Lhig,n) local lsb,a ; if n = 0 then if isprime(Lhig) then 1; else 0; end if; else a := 0 ; lsb := Lhig mod 10 ; if lsb > 0 then a := a + procname(10*Lhig+lsb-1,n-1) ; end if; if lsb < 9 then a := a + procname(10*Lhig+lsb+1,n-1) ; end if; a; end if; end proc:
%p A182781 := proc(n) if n = 1 then 4; else a := 0 ; for l from 1 to 9 do a := a + A182781aux(l,n-1) ; end do: a ; end if; end proc: # _R. J. Mathar_, Feb 01 2011
%o (Python 3.2 or higher)
%o from itertools import product, accumulate
%o from sympy import isprime
%o def A182781(n):
%o if n == 1:
%o return 4
%o count = 0
%o for d in [1,3,7,9]:
%o for elist in product([-1,1],repeat=n-1):
%o flist = [str(x) for x in accumulate([d]+list(elist)) if 0 <= x < 10]
%o if len(flist) == n and flist[-1] != '0' and is_prime(int(''.join(flist[::-1]))):
%o count += 1
%o return count # _Chai Wah Wu_, Jun 05 2017
%Y Cf. A033075, A048398.
%K nonn,base,more
%O 1,1
%A _Zak Seidov_, Feb 01 2011
%E a(22)-a(24) from _Chai Wah Wu_, May 31 2017
%E a(25)-a(32) from _Chai Wah Wu_, Jun 05 2017