Rademacher's Infinite Partial

 Fraction Conjecture is (..........) False
By Andrew V. Sills and Doron Zeilberger

 .pdf .ps .tex[Appeared in Journal of Difference Equations and Applications 19(2013), 680689]

Written: Oct. 21, 2011.
Last update of this webpage (but not article): April 17, 2012. (previous updates of this page: March 13, 2012)

The first-named author's "academic grandfather", Hans Rademacher, was a great number theorist, but even great mathematicians sometimes make false conjectures. In this article we prove (empirically) that a conjecture made by Rademacher in his posthumously published classic "Topics in Number Theory" is (very!) false as stated, but if you replace "infinity" by some good-old finite numbers it may be resurrected.

Maple Package

Important: This article is accompanied by Maple package

- HANS

[Added March 13, 2012: This new version of HANS contains a new procedure, E01s. For the record, here is the old version of HANS]

Sample Input and Output for HANS

- If you want to see the first 700 terms of the sequence $\mathrm{C}_{011}(\mathrm{~N})$ as exact rational numbers, followed by their floating-point renditions, that overwhelmingly shatter Rademacher's conjecture by showing that that sequence does not converge to anything (in particular not to -0.29292754...) but instead eventually oscillates widely getting ever-so-clse to plus infinity and ever-so-close to negative infinity (with a period that seems to be 32), the input gives the output.
- If you want to see the first 500 terms of the sequences $\mathrm{C}_{01 \mathrm{j}}(\mathrm{N})$ for j from 1 to 10 , both in exact rational arithmetic, and in

floating-point,
 the input gives the output.

- If you want to see the first $\mathbf{7 0 0}$ terms of the sequence $\mathrm{C}_{121}(\mathrm{~N})$
the input gives the output.
- If you want to see the "closest encounters" of the sequences $\mathbf{C}_{\mathrm{hkl}}(\mathrm{N})$ to Radmacher's alleged (but wrong!) "limit" (that he called, with wishful thinking, $\mathrm{C}_{\mathrm{hkl}}(\infty)$) for $0 \leq h<k \leq 3,(\operatorname{gcd}(h, k)=1), l \leq 5$, and $N \leq$ 250,
the input gives the output.
- If you want to conduct your own computer experiments with our data, we have put all the 10 sequences $\mathrm{C}_{01 \mathrm{j}}(\mathrm{N})$ for 1 $\leq \mathrm{j} \leq 10$, for $1 \leq \mathrm{N} \leq \mathbf{8 0 0}$, into one file, called HANSC01,
in Maple readable format. We named that
sequence $\mathbf{C 0 1 r}$. For example, C_{017} (597) could be gotten (once you uploaded that file), by typing
C01r[7][597];
- An even larger list then above, put all the 10 sequences $\mathrm{C}_{01 \mathrm{j}}(\mathrm{N})$ for $1 \leq \mathrm{j} \leq 10$, for $1 \leq$ $\mathrm{N} \leq 850$, into one file, called HANSC01a,
in Maple readable format. We also named that sequence C01r. For example,
$\mathrm{C}_{017}(597)$ could be gotten (once you uploaded that file), by typing C01r[7][597];
- If you want even more data, but in floating-point, we put all the 40 sequences $\mathrm{C}_{01 \mathrm{j}}(\mathrm{N})$ for $1 \leq \mathrm{j} \leq 40$, for $1 \leq N \leq 1000$, into one file, called HANSC01f,
in Maple readable format. We named that sequence C01f. For example, the floating-
point approximation of $\mathrm{C}_{017}(999)$ could be gotten gotten (once you uploaded that file), by typing
C01f[7][999];
- If you want to see the 21 sequences $\mathrm{C}_{01(-\mathrm{j})}$
(N) for j from 0 to 20 and $\mathbf{1} \leq \mathbf{N} \leq 500$ the input yields the output, in Maple readable format. We named that sequence $\mathrm{C01Minus}$. To get $\mathrm{C}_{01(-\mathrm{j})}(\mathrm{N})$, simply type, C01Minus[j+1][N]; For example, $\mathrm{C}_{01(-7)}(456)$ could be gotten (once you uploaded that file), by typing C01Minus[8][456];
- If you want to see conjectured (appx.) asymptotic expressions for $\mathrm{C}_{011}(\mathrm{~N})$ for I between 1 and 15, the input gives the output.
- If you want to see the values, in floatingpoint, of $\mathrm{C}_{\mathrm{hkl}}(\mathrm{N})$ for $0<h<k<10, k \geq 3$,
with $\operatorname{gcd}(h, k)=1$ and for 1 between 1 and 10 , and N between 1 and 400 the input gives the output.
- [Added March 13, 2012]

If you want to see the first 1500 terms of the sequence $\mathrm{C}_{011}(\mathrm{~N}) *\left(2^{*} \mathrm{~N}\right)$!,
the input gives the output.
[Added April 17, 2012]
If you want to see the first 2000 terms of the sequence $\mathrm{C}_{011}(\mathrm{~N}) *\left(\mathbf{2}^{*} \mathrm{~N}\right)$!, the input gives the output.

- [Added March 13, 2012]

If you want to see conjectured (appx.) asymptotic expressions for $\mathrm{C}_{011}(\mathrm{~N})$ (using 1500 terms rather than 900 as in oHANS10)
the input gives the output.

[Added April 17, 2012]

If you want to see conjectured (appx.) asymptotic expressions for $\mathrm{C}_{011}(\mathrm{~N})$ (using 2000 terms rather than 1500 as in oHANS13)
the input gives the output.
[Note the "shifting of the perihelion!", now the maxima are at $1(\bmod 32)$ and the minima at $17(\bmod 32)$]

Doron Zeilberger's List of Papers
Doron Zeilberger's Home Page

