%I #12 Aug 06 2013 15:32:30
%S 3,19,59,379,4603,1048571,44040187,7516192763,6614661952700411,
%T 13510798882111483,477381560501272571,16717361816799281147,
%U 4869940435459321626619,802726744224113772004900859
%N Primes of the form n*2^n - 5.
%C These are similar to the Woodall primes, A050918, and to sequence A182352, which are primes of the form n*2^n - 1 and of the form n*2^n - 3 respectively. However, this sequence seems to grow rather more slowly than those.
%H Harvey P. Dale, <a href="/A182353/b182353.txt">Table of n, a(n) for n = 1..26</a>
%e 3 = 2*2^2 - 5; 19 = 3*2^3 - 5; 59 = 4*2^4 - 5.
%p #choose N large, then S is the desired set
%p f:=n->n*2^n - 5:
%p S:={}:
%p for n from 0 to N do if(isprime(f(n))) then S:=S union {f(n)}: fi: od
%t Select[Table[n*2^n-5,{n,2,100}],PrimeQ] (* _Harvey P. Dale_, Aug 06 2013 *)
%Y Cf. A050918, A182352.
%K nonn
%O 1,1
%A _Patrick Devlin_, Apr 25 2012