Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.
%I #21 Aug 11 2015 17:25:34
%S 0,55,4,384,51,7,2303,328,48,8,0,1943,287,47,10,0,0,1680,276,45,11,0,
%T 0,0,1611,250,44,12,0,0,0,0,1445,239,43,13,0,0,0,0,0,1376,228,42,14,0,
%U 0,0,0,0,1307,213,41,15
%N Table of triangular arguments such that if A002262(14*k) = "r" then the product A182439(k,i + 1) *A182439(k,i + 2) equals "r" + A000217(a(k,i)) for i<4, while a(k,i) = 0 for i>3.
%C The triangular product A000217(a(k,i)) for i < 4 + A002262(14*k) = the product of adjacent terms G(k,i+1)*G(k,i+2) where G is table A182439. The remainder of each row is padded with zeros. However, if for i > 3, a(k,i) were set to equal 7*a(k,i-1) - 7*a(k,i-2) + a(k,i-3) then the relation above would not be limited to i < 4.
%C Also, it is noted that the difference between adjacent rows of the respective elements, depends on the difference between the elements of column 0 in the respective rows. In the Mathematica program below, m is set to 14; however, regardless of it value of m, it is apparent that the series of differences corresponding to a difference of d in column 0, i.e. A(k+1,0) - A(k,0) = d, is defined as follows: D(0) = d, D(1) = - d, D(n) = 6*D(n-1) - D(n-2) -8*d + 4. The sequence of differences corresponding to a difference of 1 or 0 in column 0 form related series A182188 and A182190.
%C The Mathematica program below basically first computes only the nonnegative triangular arguments P. Then it changes at most two of the arguments P in each row k to the corresponding negative value, N = -P -1, in order to obtain the relation a(k,3) = a(k,0) - 7*a(k,1) + 7*a(k,2).
%t highTri = Compile[{{S1,_Integer}},Module[{xS0=0,xS1=S1},
%t While[xS1-xS0*(xS0+1)/2>xS0,xS0++];
%t xS0]];
%t overTri = Compile[{{S2,_Integer}},Module[{xS0=0,xS2=S2},
%t While[xS2-xS0*(xS0+1)/2>xS0,xS0++];
%t xS2 - (xS0*(1+xS0)/2)]];
%t tt = SparseArray[{{12,1} -> 1,{1,12} -> 1}];
%t K1 = 0;
%t m = 14;While[K1<12,J1=highTri[m*K1];X =2*(m+K1-(J1*2+1));
%t K2 = 6 m - K1 + X; K3 = 6 K2 - m + X;K4 = 6 K3 - K2 + X;
%t o = overTri[m*K1]; tt[[1,K1+1]] =highTri[m*K1];
%t tt[[2,K1+1]] = highTri[m*K2-o];tt[[3,K1+1]] = highTri[K2*K3-o];tt[[4,K1+1]] = highTri[K3*K4-o];
%t K1++];k = 1;
%t While[k<13,z = 1; xx = 99; While[z<5 && xx == 99,
%t If[tt[[1,k]]+ 7 tt[[3,k]] - 7 tt[[2,k]] - tt[[4,k]] == 0,Break[]];
%t If[z == 1,t = -tt[[z,k]]-1;tt[[z,k]] = t,s = -tt[[z-1,k]]-1;tt[[z-1,k]]=s;t =-tt[[z,k]]-1];tt[[z,k]] = t;
%t w = 1;While[w<5 && xx == 99,If[tt[[1,k]]+ 7 tt[[3,k]] - 7 tt[[2,k]] - tt[[4,k]] == 0,xx =0;Break[]];If[w==z,w++];
%t t=-tt[[w,k]] - 1;tt[[w,k]]=t;If[tt[[1,k]]+ 7 tt[[3,k]] - 7 tt[[2,k]] - tt[[4,k]] == 0,xx =0;Break[],
%t t = -tt[[w,k]] - 1];tt[[w,k]] = t;w++];z++];cc = tt[[1,k]] -6 tt[[2,k]] + tt[[3,k]];p = 5;While[p < 14-k,
%t tt[[p,k]] = 6 tt[[p-1,k]] - tt[[p-2,k]] + cc;p++]; k++];
%t a=1;list2 = Reap[While[a<12, b=a; While[b>4,Sow[0];b--];While[b>0, Sow[tt[[b, a+1-b]]]; b--]; a++]][[2, 1]];list2
%Y Cf. A182439, A182188, A182190
%K nonn,tabl
%O 0,2
%A _Kenneth J Ramsey_, Apr 12 2012