login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A181789
Pandigital biperiod squares: pandigital squares whose digits repeat twice in order.
3
183673469387755102041183673469387755102041, 326530612244897959184326530612244897959184, 734693877551020408164734693877551020408164, 132231404958677685950413223140496132231404958677685950413223140496
OFFSET
1,1
COMMENTS
Ondrejka asks in Problem 1130(b) (see reference) what the smallest biperiod square is in which the ten decimal digits occur equally often (an equipandigital biperiod square), but it remains unknown whether any such square even exists.
REFERENCES
R. Ondrejka, Problem 1130: Biperiod Squares, Journal of Recreational Mathematics, Vol. 14:4 (1981-82), 299. Solution by F. H. Kierstead, Jr., JRM, Vol. 15:4 (1982-83), 311-312.
LINKS
PROG
(Python)
from itertools import count, islice
from sympy import sqrt_mod
def A181789_gen(): # generator of terms
for j in count(9):
b = 10**j
a = b*10+1
for k in sorted(sqrt_mod(0, a, all_roots=True)):
if a*b <= (m:=k**2) < a*(a-1) and len(set(str(m//a))) == 10:
yield m
A181789_list = list(islice(A181789_gen(), 20)) # Chai Wah Wu, Mar 23 2024
CROSSREFS
Cf. A092118 (biperiod squares), A181790, A181791.
Sequence in context: A095476 A292856 A292846 * A095478 A291353 A095480
KEYWORD
nonn,base
AUTHOR
STATUS
approved