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1. Introduction

In this article, we derive a recurrence for the number of (n + 2) × (k + 2) binary matrices with
n ≥ 1 and k ≥ 1 such that every 3 × 3 block has exactly four ones. This is Sequence A181262 in
the On-Line Encyclopedia of Integer Sequences. For brevity, let us say that a matrix is good if it
satisfies the conditions described above.

A binary matrix is an integer matrix in which each entry is either zero or one. A 3× 3 block of a
matrix A = (ai,j) is a submatrix A′ of the form

A′ =

 ai,j ai,j+1 ai,j+2

ai+1,j ai+1,j+1 ai+1,j+2

ai+2,j ai+2,j+1 ai+2,j+2

 .

We will show that, for each fixed value of k, the number of solutions s satisfies the following
24th-order recurrence relation:

Theorem 1. Let A = {2, 3, 4, 6, 9, 12, 18}. Then

(T − I) ◦ (T − 2I) ◦ (T − 3I) ◦
∏
a∈A

(T 3 − aI)(s) = 0.

The notation will be explained in the next section.

2. Review of sequences and linear operators

Let Rω denote the set of all infinite sequences of real numbers. Rω is a real vector space, with
addition and scalar multiplication defined elementwise.

(s1, s2, . . .) + (t1, t2, . . .) = (s1 + t1, s2 + t2, . . .)

c · (s1, s2, . . .) = (cs1, cs2, . . .)

The zero sequence
0 = (0, 0, . . .)

is the additive identity for Rω.

A linear operator on Rω is a function L : Rω → Rω such that L(s + t) = L(s) + L(t) and
L(c · s) = c · L(s) for all s, t ∈ Rω and c ∈ R. Important examples of linear operators on Rω

include:

(1) The identity operator I, defined by I(s) = s for all s ∈ Rω, and

(2) The shift operator T , defined by T (s)(n) = s(n+ 1) for all s ∈ Rω and n ∈ N.
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The set of all linear operators on Rω is closed under addition, scalar multiplication, and composition.
Nonnegative integer powers of a linear operator are defined via iterated composition:

Ln =

{
I if n = 0,

L ◦ Ln−1 if n ≥ 1.

Composition of linear operators is not commutative in general; but polynomial functions of the
same operator commute with one another. That is, if P =

∑m
i=0 aiL

i and Q =
∑n

j=0 bjL
j , then

P ◦Q = Q◦P . This follows from the distributive law and the fact that Li◦Lj = Lj◦Li = Li+j .

The composition of several linear operators L1 ◦ · · · ◦ Lk is denoted by
∏k

i=1 Li.

Theorem 2. Let s1, · · · , sr ∈ Rω, and let L1, . . . , Lr be pairwise commuting linear operators on
Rω such that Li(si) = 0 for i = 1, . . . , r. Then(

r∏
i=1

Li

) r∑
j=1

sj

 = 0.

Proof. Since the Li commute with one another,(
r∏

i=1

Li

)
(sj) =

∏
i ̸=j

Li

 ◦ Lj

 (sj) =

∏
i ̸=j

Li

 (0) = 0.

Therefore, (
r∏

i=1

Li

) r∑
j=1

sj

 =
r∑

j=1

(
r∏

i=1

Li

)
(sj) =

r∑
j=1

0 = 0.

□

3. An equivalence relation

Define an equivalence relation ∼ on binary sequences of length k + 2 as follows:

(s1, . . . , sk+2) ∼ (t1, . . . , tk+2) ⇐⇒
j+2∑
i=j

si =

j+2∑
i=j

ti (∀j, 1 ≤ j ≤ k).

Theorem 3. Every equivalence class of ∼ has at most three elements.

Proof. Consider the following system of equations in a1, . . . , ak+2, where c1, . . . , ck+2 are given:

a1 = c1
a2 = c2
a1 + a2 + a3 = c3

...
ak + ak+1 + ak+2 = ck+2.

This system has a unique real solution, since it is lower triangular with nonzero coefficients along
the diagonal.

2



Delete the first two equations. Then we can solve for the remaining variables a3, . . . , ak+2 in terms
of a1 and a2. Since there are four possible combinations of binary values for a1 and a2, the system
has at most four binary solutions.

Consider the equation a1 + a2 + a3 = c3. If (a1, a2) = (0, 0) then c3 must be 0 or 1, while if
(a1, a2) = (1, 1) then c3 must be 2 or 3. At most one of these statements can be true. Therefore, the
system has at most three binary solutions, so each equivalence class has at most three elements. □

Note: We can easily find equivalence classes having exactly 1, 2, or 3 elements. The sequence
(0, 0, 0) is equivalent only to itself. The sequence (0, 0, 1, 1) is equivalent only to itself and (0, 1, 0, 1).
Finally, (0, 0, 1) is equivalent to (0, 1, 0) and (1, 0, 0).

For any matrix A, let A(i) denote the i-th row of A. We extend ∼ to an equivalence relation ≈ on
binary matrices having at least three rows via A ≈ B ⇐⇒ A(i) ∼ B(i) for i = 1, 2, 3. Note that
equivalent matrices may have different numbers of rows. There are only finitely many equivalence
classes for a given number of columns, since equivalence is determined by the first three rows.

Theorem 4. Let A and B be binary matrices having the same number of columns. Suppose that
A is good and A ≈ B. Then B is good if and only if B(i) ∼ B(i+3) for all i, 1 ≤ i ≤ n − 1 where
n+ 2 is the number of rows of B.

Proof. Assume that B = (bi,j) is good. For any i, j with 1 ≤ i ≤ n− 1 and 1 ≤ j ≤ k, we have

i+2∑
u=i

j+2∑
v=j

bu,v = 4 and
i+3∑

u=i+1

j+2∑
v=j

bu,v = 4.

Subtracting these equations yields
j+2∑
v=j

bi,v =

j+2∑
v=j

bi+3,v

for all v. Therefore, B(i) ∼ B(i+3).

Conversely, suppose that B(i) ∼ B(i+3) for all i, 1 ≤ i ≤ n− 1. It is required to prove that

(1)
i+2∑
u=i

j+2∑
v=j

bu,v = 4

for all i, j with 1 ≤ i ≤ n− 1 and 1 ≤ j ≤ k.

Equation 1 holds when i = 1 because the first three rows of B are equivalent to the first three rows
of A, so

3∑
u=1

i+2∑
v=i

bu,v =
3∑

u=1

i+2∑
v=i

au,v = 4.

Assume that Equation 1 holds for some i = i0 with 1 ≤ i0 ≤ n− 2. This implies that

(2)

i0+2∑
u=i0

j+2∑
v=j

bu,v = 4

for all j with 1 ≤ j ≤ k.
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Since B(i0) ∼ B(i0+3),

(3)

j+2∑
v=j

(bi0+3,v − bi0,v) = 0.

Adding Equations 2 and 3 yields
i0+3∑

u=i0+1

j+2∑
v=j

bu,v = 4.

Therefore, Equation 1 holds for i = i0 + 1, so it holds for all i by induction. □

Theorem 5. Let A be a good 3 × (k + 2) matrix, and let s(n) denote the number of good (n +
2) × (k + 2) matrices that are equivalent to A. Let c1, c2, and c3 denote the cardinalities of the
equivalence classes of the rows of A. Then s(n + 3) = c1c2c3s(n) for all n ≥ 1. Moreover, if
c1 = c2 = c3 then s(n+ 1) = c1s(n).

Proof. Let B a good (n+2)×(k+2) binary matrix that is equivalent to A By the previous theorem,
we have

A(1) ∼ B(1) ∼ B(4) ∼ B(7) ∼ · · ·

A(2) ∼ B(2) ∼ B(5) ∼ B(8) ∼ · · ·

A(3) ∼ B(3) ∼ B(6) ∼ B(9) ∼ · · ·

There are c1 ways to choose each of the rows B(1), B(4), B(7), etc. Similarly, there are c2 ways to
choose each of the rows B(2), B(5), B(8), etc., and c3 ways to choose each of the rows B(3), B(6), B(9),
etc. Conversely, any combination of these choices yields a good matrix that is equivalent to A.

Therefore, s(n) = c1c2c3c1c2c3 · · ·︸ ︷︷ ︸
n+2 factors

which implies that s(n+ 3) = c1c2c3s(n).

In the special case where c1 = c2 = c3, we find that s(n) = cn+2
1 , which implies that s(n + 1) =

c1s(n).

□

4. Proof of Theorem 1

Let k ≥ 1 be a fixed integer, and let A1, . . . , Ar be a complete set of representatives for the
equivalence relation ≈ on all 3× (k + 2) binary matrices.

For each n ≥ 1, let s(n) denote the number of good (n+2)× (k+2) matrices, and let si(n) denote
the number of good (n + 2) × (k + 2) matrices that are equivalent to Ai. Note that s =

∑r
i=1 si,

since each good matrix is equivalent to exactly one Ai.

For each i with 1 ≤ i ≤ r, we define a linear operator Li that satisfies Li(si) = 0. Let c1, c2, and
c3 denote the cardinalities of the equivalence classes of the rows of Ai, and define

Li =

{
T − c1I if c1 = c2 = c3,

T 3 − c1c2c3I otherwise.

Then Li(si) = 0 by Theorem 5.
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Since c1, c2, c3 ∈ {1, 2, 3} by Theorem 3, there are only 10 possible values for Li, namely T − I,
T − 2I, T − 3I, and T 3 − aI for a ∈ {2, 3, 4, 6, 9, 12, 18}. All of these operators commute with one
another, since they are polynomials in T .

Let A = {2, 3, 4, 6, 9, 12, 18} and let

L = (T − I) ◦ (T − 2I) ◦ (T − 3I) ◦
∏
a∈A

(T 3 − aI).

Then L(s) = 0 by Theorem 2, which completes the proof.
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